forked from felt/tippecanoe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserial.cpp
918 lines (772 loc) · 25.8 KB
/
serial.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <string>
#include <vector>
#include <sqlite3.h>
#include <set>
#include <map>
#include <algorithm>
#include <limits.h>
#include <zlib.h>
#include "protozero/varint.hpp"
#include "geometry.hpp"
#include "mbtiles.hpp"
#include "mvt.hpp"
#include "tile.hpp"
#include "serial.hpp"
#include "options.hpp"
#include "main.hpp"
#include "pool.hpp"
#include "projection.hpp"
#include "evaluator.hpp"
#include "milo/dtoa_milo.h"
#include "errors.hpp"
// Offset coordinates to keep them positive
#define COORD_OFFSET (4LL << 32)
#define SHIFT_RIGHT(a) ((long long) std::round((double) (a) / (1LL << geometry_scale)))
#define SHIFT_LEFT(a) ((((a) + (COORD_OFFSET >> geometry_scale)) << geometry_scale) - COORD_OFFSET)
// write to file
size_t fwrite_check(const void *ptr, size_t size, size_t nitems, FILE *stream, std::atomic<long long> *fpos, const char *fname) {
size_t w = fwrite(ptr, size, nitems, stream);
if (w != nitems) {
fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno));
exit(EXIT_WRITE);
}
*fpos += size * nitems;
return w;
}
void serialize_int(FILE *out, int n, std::atomic<long long> *fpos, const char *fname) {
serialize_long_long(out, n, fpos, fname);
}
void serialize_long_long(FILE *out, long long n, std::atomic<long long> *fpos, const char *fname) {
unsigned long long zigzag = protozero::encode_zigzag64(n);
serialize_ulong_long(out, zigzag, fpos, fname);
}
void serialize_ulong_long(FILE *out, unsigned long long zigzag, std::atomic<long long> *fpos, const char *fname) {
char buf[10]; // ceil(64 / 7)
char *s = buf;
while (zigzag >= 0x80) {
*s++ = (zigzag & 0x7F) | 0x80;
zigzag >>= 7;
}
*s++ = zigzag;
fwrite_check(buf, sizeof(char), s - buf, out, fpos, fname);
}
void serialize_byte(FILE *out, signed char n, std::atomic<long long> *fpos, const char *fname) {
fwrite_check(&n, sizeof(signed char), 1, out, fpos, fname);
}
void serialize_uint(FILE *out, unsigned n, std::atomic<long long> *fpos, const char *fname) {
serialize_ulong_long(out, n, fpos, fname);
}
// write to memory
size_t fwrite_check(const void *ptr, size_t size, size_t nitems, std::string &stream) {
stream += std::string((char *) ptr, size * nitems);
return nitems;
}
void serialize_ulong_long(std::string &out, unsigned long long zigzag) {
char buf[10]; // ceil(64 / 7)
char *s = buf;
while (zigzag >= 0x80) {
*s++ = (zigzag & 0x7F) | 0x80;
zigzag >>= 7;
}
*s++ = zigzag;
out.append(buf, s - buf);
}
void serialize_long_long(std::string &out, long long n) {
unsigned long long zigzag = protozero::encode_zigzag64(n);
serialize_ulong_long(out, zigzag);
}
void serialize_int(std::string &out, int n) {
serialize_long_long(out, n);
}
void serialize_byte(std::string &out, signed char n) {
out += n;
}
void serialize_uint(std::string &out, unsigned n) {
serialize_ulong_long(out, n);
}
// read from memory
void deserialize_int(const char **f, int *n) {
long long ll;
deserialize_long_long(f, &ll);
*n = ll;
}
void deserialize_long_long(const char **f, long long *n) {
unsigned long long zigzag = 0;
deserialize_ulong_long(f, &zigzag);
*n = protozero::decode_zigzag64(zigzag);
}
void deserialize_ulong_long(const char **f, unsigned long long *zigzag) {
*zigzag = 0;
int shift = 0;
while (1) {
if ((**f & 0x80) == 0) {
*zigzag |= ((const unsigned long long) **f) << shift;
*f += 1;
shift += 7;
break;
} else {
*zigzag |= ((const unsigned long long) (**f & 0x7F)) << shift;
*f += 1;
shift += 7;
}
}
}
void deserialize_uint(const char **f, unsigned *n) {
unsigned long long v;
deserialize_ulong_long(f, &v);
*n = v;
}
void deserialize_byte(const char **f, signed char *n) {
memcpy(n, *f, sizeof(signed char));
*f += sizeof(signed char);
}
static void write_geometry(drawvec const &dv, std::string &out, long long wx, long long wy) {
for (size_t i = 0; i < dv.size(); i++) {
if (dv[i].op == VT_MOVETO || dv[i].op == VT_LINETO) {
serialize_byte(out, dv[i].op);
serialize_long_long(out, dv[i].x - wx);
serialize_long_long(out, dv[i].y - wy);
wx = dv[i].x;
wy = dv[i].y;
} else {
serialize_byte(out, dv[i].op);
}
}
serialize_byte(out, VT_END);
}
// called from generating the next zoom level
std::string serialize_feature(serial_feature *sf, long long wx, long long wy) {
std::string s;
serialize_byte(s, sf->t);
#define FLAG_LAYER 7
#define FLAG_LABEL_POINT 6
#define FLAG_INDEX 4
#define FLAG_EXTENT 3
#define FLAG_ID 2
#define FLAG_MINZOOM 1
#define FLAG_MAXZOOM 0
long long layer = 0;
layer |= sf->layer << FLAG_LAYER;
layer |= (sf->label_point != 0) << FLAG_LABEL_POINT;
layer |= (sf->index != 0) << FLAG_INDEX;
layer |= (sf->extent != 0) << FLAG_EXTENT;
layer |= sf->has_id << FLAG_ID;
layer |= (sf->tippecanoe_minzoom != -1) << FLAG_MINZOOM;
layer |= (sf->tippecanoe_maxzoom != -1) << FLAG_MAXZOOM;
serialize_long_long(s, layer);
serialize_long_long(s, sf->seq);
if (sf->tippecanoe_minzoom != -1) {
serialize_int(s, sf->tippecanoe_minzoom);
}
if (sf->tippecanoe_maxzoom != -1) {
serialize_int(s, sf->tippecanoe_maxzoom);
}
if (sf->has_id) {
serialize_ulong_long(s, sf->id);
}
serialize_int(s, sf->segment);
write_geometry(sf->geometry, s, wx, wy);
if (sf->index != 0) {
serialize_ulong_long(s, sf->index);
}
if (sf->label_point != 0) {
serialize_ulong_long(s, sf->label_point);
}
if (sf->extent != 0) {
serialize_long_long(s, sf->extent);
}
serialize_long_long(s, sf->keys.size());
for (size_t i = 0; i < sf->keys.size(); i++) {
serialize_long_long(s, sf->keys[i]);
serialize_long_long(s, sf->values[i]);
}
// MAGIC: This knows that the feature minzoom is the last byte of the feature,
serialize_byte(s, sf->feature_minzoom);
return s;
}
serial_feature deserialize_feature(std::string const &geoms, unsigned z, unsigned tx, unsigned ty, unsigned *initial_x, unsigned *initial_y) {
serial_feature sf;
const char *cp = geoms.c_str();
deserialize_byte(&cp, &sf.t);
deserialize_long_long(&cp, &sf.layer);
sf.seq = 0;
deserialize_long_long(&cp, &sf.seq);
sf.tippecanoe_minzoom = -1;
sf.tippecanoe_maxzoom = -1;
sf.id = 0;
sf.has_id = false;
if (sf.layer & (1 << FLAG_MINZOOM)) {
deserialize_int(&cp, &sf.tippecanoe_minzoom);
}
if (sf.layer & (1 << FLAG_MAXZOOM)) {
deserialize_int(&cp, &sf.tippecanoe_maxzoom);
}
if (sf.layer & (1 << FLAG_ID)) {
sf.has_id = true;
deserialize_ulong_long(&cp, &sf.id);
}
deserialize_int(&cp, &sf.segment);
sf.index = 0;
sf.label_point = 0;
sf.extent = 0;
sf.geometry = decode_geometry(&cp, z, tx, ty, sf.bbox, initial_x[sf.segment], initial_y[sf.segment]);
if (sf.layer & (1 << FLAG_INDEX)) {
deserialize_ulong_long(&cp, &sf.index);
}
if (sf.layer & (1 << FLAG_LABEL_POINT)) {
deserialize_ulong_long(&cp, &sf.label_point);
}
if (sf.layer & (1 << FLAG_EXTENT)) {
deserialize_long_long(&cp, &sf.extent);
}
sf.layer >>= FLAG_LAYER;
long long count;
deserialize_long_long(&cp, &count);
for (long long i = 0; i < count; i++) {
long long k, v;
deserialize_long_long(&cp, &k);
deserialize_long_long(&cp, &v);
sf.keys.push_back(k);
sf.values.push_back(v);
}
// MAGIC: This knows that the feature minzoom is the last byte of the feature.
deserialize_byte(&cp, &sf.feature_minzoom);
if (cp != geoms.c_str() + geoms.size()) {
fprintf(stderr, "wrong length decoding feature: used %zd, len is %zu\n", cp - geoms.c_str(), geoms.size());
exit(EXIT_IMPOSSIBLE);
}
return sf;
}
static long long scale_geometry(struct serialization_state *sst, long long *bbox, drawvec &geom) {
long long offset = 0;
long long prev = 0;
bool has_prev = false;
double scale = 1.0 / (1 << geometry_scale);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO || geom[i].op == VT_LINETO) {
long long x = geom[i].x;
long long y = geom[i].y;
if (additional[A_DETECT_WRAPAROUND]) {
if (geom[i].op == VT_LINETO) {
x += offset;
if (has_prev) {
// jumps at least 180° but not exactly 360°,
// which in some data sets is an intentional
// line across the world
if (x - prev > (1LL << 31) && x - prev != (1LL << 32)) {
offset -= 1LL << 32;
x -= 1LL << 32;
} else if (prev - x > (1LL << 31) && prev - x != (1LL << 32)) {
offset += 1LL << 32;
x += 1LL << 32;
}
}
has_prev = true;
prev = x;
} else {
offset = 0;
prev = x;
}
}
if (x < bbox[0]) {
bbox[0] = x;
}
if (y < bbox[1]) {
bbox[1] = y;
}
if (x > bbox[2]) {
bbox[2] = x;
}
if (y > bbox[3]) {
bbox[3] = y;
}
if (!*(sst->initialized)) {
if (x < 0 || x >= (1LL << 32) || y < 0 || y >= (1LL << 32)) {
*(sst->initial_x) = 1LL << 31;
*(sst->initial_y) = 1LL << 31;
} else {
*(sst->initial_x) = SHIFT_LEFT(SHIFT_RIGHT(x));
*(sst->initial_y) = SHIFT_LEFT(SHIFT_RIGHT(y));
}
*(sst->initialized) = 1;
}
if (additional[A_GRID_LOW_ZOOMS]) {
// If we are gridding, snap to the maxzoom grid in case the incoming data
// is already supposed to be aligned to tile boundaries (but is not, exactly,
// because of rounding error during projection).
geom[i].x = std::round(x * scale);
geom[i].y = std::round(y * scale);
} else {
geom[i].x = SHIFT_RIGHT(x);
geom[i].y = SHIFT_RIGHT(y);
}
}
}
return geom.size();
}
static std::string strip_zeroes(std::string s) {
// Doesn't do anything special with '-' followed by leading zeros
// since integer IDs must be positive
while (s.size() > 0 && s[0] == '0') {
s.erase(s.begin());
}
return s;
}
int nodecmp(const void *void1, const void *void2) {
node *n1 = (node *) void1;
node *n2 = (node *) void2;
if (n1->index < n2->index) {
return -1;
} else if (n1->index > n2->index) {
return 1;
}
return 0;
}
static void add_scaled_node(struct reader *r, serialization_state *sst, draw g) {
long long x = SHIFT_LEFT(g.x);
long long y = SHIFT_LEFT(g.y);
struct node n;
n.index = encode_quadkey((unsigned) x, (unsigned) y);
fwrite_check((char *) &n, sizeof(struct node), 1, r->nodefile, &r->nodepos, sst->fname);
}
// called from frontends
int serialize_feature(struct serialization_state *sst, serial_feature &sf, std::string const &layername) {
struct reader *r = &(*sst->readers)[sst->segment];
sf.bbox[0] = LLONG_MAX;
sf.bbox[1] = LLONG_MAX;
sf.bbox[2] = LLONG_MIN;
sf.bbox[3] = LLONG_MIN;
for (size_t i = 0; i < sf.geometry.size(); i++) {
if (sf.geometry[i].op == VT_MOVETO || sf.geometry[i].op == VT_LINETO) {
if (sf.geometry[i].y > 0 && sf.geometry[i].y < 0xFFFFFFFF) {
// standard -180 to 180 world plane
long long x = sf.geometry[i].x & 0xFFFFFFFF;
long long y = sf.geometry[i].y & 0xFFFFFFFF;
r->file_bbox1[0] = std::min(r->file_bbox1[0], x);
r->file_bbox1[1] = std::min(r->file_bbox1[1], y);
r->file_bbox1[2] = std::max(r->file_bbox1[2], x);
r->file_bbox1[3] = std::max(r->file_bbox1[3], y);
// printf("%llx,%llx %llx,%llx %llx,%llx ", x, y, r->file_bbox1[0], r->file_bbox1[1], r->file_bbox1[2], r->file_bbox1[3]);
// shift the western hemisphere 360 degrees to the east
if (x < 0x80000000) { // prime meridian
x += 0x100000000;
}
r->file_bbox2[0] = std::min(r->file_bbox2[0], x);
r->file_bbox2[1] = std::min(r->file_bbox2[1], y);
r->file_bbox2[2] = std::max(r->file_bbox2[2], x);
r->file_bbox2[3] = std::max(r->file_bbox2[3], y);
}
}
}
// try to remind myself that the geometry in this function is in SCALED COORDINATES
drawvec scaled_geometry = sf.geometry;
sf.geometry.clear();
scale_geometry(sst, sf.bbox, scaled_geometry);
// This has to happen after scaling so that the wraparound detection has happened first.
// Otherwise the inner/outer calculation will be confused by bad geometries.
if (sf.t == VT_POLYGON) {
scaled_geometry = fix_polygon(scaled_geometry);
}
for (auto &c : clipbboxes) {
if (sf.t == VT_POLYGON) {
scaled_geometry = simple_clip_poly(scaled_geometry, SHIFT_RIGHT(c.minx), SHIFT_RIGHT(c.miny), SHIFT_RIGHT(c.maxx), SHIFT_RIGHT(c.maxy), prevent[P_SIMPLIFY_SHARED_NODES]);
} else if (sf.t == VT_LINE) {
scaled_geometry = clip_lines(scaled_geometry, SHIFT_RIGHT(c.minx), SHIFT_RIGHT(c.miny), SHIFT_RIGHT(c.maxx), SHIFT_RIGHT(c.maxy));
} else if (sf.t == VT_POINT) {
scaled_geometry = clip_point(scaled_geometry, SHIFT_RIGHT(c.minx), SHIFT_RIGHT(c.miny), SHIFT_RIGHT(c.maxx), SHIFT_RIGHT(c.maxy));
}
scaled_geometry = remove_noop(scaled_geometry, sf.t, 0);
sf.bbox[0] = LLONG_MAX;
sf.bbox[1] = LLONG_MAX;
sf.bbox[2] = LLONG_MIN;
sf.bbox[3] = LLONG_MIN;
for (auto &g : scaled_geometry) {
long long x = SHIFT_LEFT(g.x);
long long y = SHIFT_LEFT(g.y);
if (x < sf.bbox[0]) {
sf.bbox[0] = x;
}
if (y < sf.bbox[1]) {
sf.bbox[1] = y;
}
if (x > sf.bbox[2]) {
sf.bbox[2] = x;
}
if (y > sf.bbox[3]) {
sf.bbox[3] = y;
}
}
}
if (scaled_geometry.size() == 0) {
// Feature was clipped away
return 1;
}
if (prevent[P_SIMPLIFY_SHARED_NODES]) {
scaled_geometry = remove_noop(scaled_geometry, sf.t, 0);
if (sf.t == VT_POLYGON || sf.t == VT_LINE) {
for (size_t i = 0; i < scaled_geometry.size(); i++) {
if (scaled_geometry[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < scaled_geometry.size(); j++) {
if (scaled_geometry[j].op != VT_LINETO) {
break;
}
}
if (sf.t == VT_POLYGON && j - i >= 4) {
for (size_t k = i; k < j - 1; k++) {
// % (j - i - 1) because we don't want the duplicate last point
struct vertex v(
scaled_geometry[(k - i + 0) % (j - i - 1) + i],
scaled_geometry[(k - i + 1) % (j - i - 1) + i],
scaled_geometry[(k - i + 2) % (j - i - 1) + i]);
fwrite_check((char *) &v, sizeof(struct vertex), 1, r->vertexfile, &r->vertexpos, sst->fname);
}
} else if (sf.t == VT_LINE && j - i >= 2) {
for (size_t k = i; k + 2 < j; k++) {
struct vertex v(
scaled_geometry[k + 0],
scaled_geometry[k + 1],
scaled_geometry[k + 2]);
fwrite_check((char *) &v, sizeof(struct vertex), 1, r->vertexfile, &r->vertexpos, sst->fname);
}
}
// since the starting point is never simplified away,
// don't let it be simplified away in any other polygons either.
// Needs to appear twice here so that the check below will see
// it as appearing in multiple features.
add_scaled_node(r, sst, scaled_geometry[i]);
if (sf.t == VT_LINE && j - i >= 2) {
// linestrings also need to preserve the last point
add_scaled_node(r, sst, scaled_geometry[j - 1]);
} else if (sf.t == VT_POLYGON && j - i >= 4) {
// To avoid letting polygons get simplified away to nothing,
// also keep the furthest-away point from the initial point
// (which Douglas-Peucker simplification would keep anyway,
// if its search weren't being split up by polygon side).
double far = 0;
size_t which = i;
for (size_t k = i + 1; k < j - 1; k++) {
double xd = scaled_geometry[k].x - scaled_geometry[i].x;
double yd = scaled_geometry[k].y - scaled_geometry[i].y;
double d = xd * xd + yd * yd;
if (d > far ||
((d == far) && (scaled_geometry[k] < scaled_geometry[which]))) {
far = d;
which = k;
}
}
add_scaled_node(r, sst, scaled_geometry[which]);
// And, likewise, the point most distant from those two points,
// which probably would also be the one that Douglas-Peucker
// would keep next.
far = 0;
size_t which2 = i;
for (size_t k = i + 1; k < j - 1; k++) {
double d = distance_from_line(scaled_geometry[k].x, scaled_geometry[k].y,
scaled_geometry[i].x, scaled_geometry[i].y,
scaled_geometry[which].x, scaled_geometry[which].y);
if ((d > far) ||
((d == far) && (scaled_geometry[k] < scaled_geometry[which2]))) {
far = d;
which2 = k;
}
}
add_scaled_node(r, sst, scaled_geometry[which2]);
}
i = j - 1;
}
}
}
}
if (!sf.has_id) {
if (additional[A_GENERATE_IDS]) {
sf.has_id = true;
sf.id = sf.seq + 1;
}
}
if (sst->want_dist) {
std::vector<unsigned long long> locs;
for (size_t i = 0; i < scaled_geometry.size(); i++) {
if (scaled_geometry[i].op == VT_MOVETO || scaled_geometry[i].op == VT_LINETO) {
locs.push_back(encode_index(SHIFT_LEFT(scaled_geometry[i].x), SHIFT_LEFT(scaled_geometry[i].y)));
}
}
std::stable_sort(locs.begin(), locs.end());
size_t n = 0;
double sum = 0;
for (size_t i = 1; i < locs.size(); i++) {
if (locs[i - 1] != locs[i]) {
sum += log(locs[i] - locs[i - 1]);
n++;
}
}
if (n > 0) {
double avg = exp(sum / n);
// Convert approximately from tile units to feet
// See comment about empirical data in main.cpp
double dist_ft = sqrt(avg) / 33;
*(sst->dist_sum) += log(dist_ft) * n;
*(sst->dist_count) += n;
}
locs.clear();
}
double extent = 0;
if (additional[A_DROP_SMALLEST_AS_NEEDED] || additional[A_COALESCE_SMALLEST_AS_NEEDED] || order_by_size || sst->want_dist) {
if (sf.t == VT_POLYGON) {
for (size_t i = 0; i < scaled_geometry.size(); i++) {
if (scaled_geometry[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < scaled_geometry.size(); j++) {
if (scaled_geometry[j].op != VT_LINETO) {
break;
}
}
extent += SHIFT_LEFT(SHIFT_LEFT(1LL)) * get_area(scaled_geometry, i, j);
i = j - 1;
}
}
} else if (sf.t == VT_LINE) {
double dist = 0;
for (size_t i = 1; i < scaled_geometry.size(); i++) {
if (scaled_geometry[i].op == VT_LINETO) {
double xd = SHIFT_LEFT(scaled_geometry[i].x - scaled_geometry[i - 1].x);
double yd = SHIFT_LEFT(scaled_geometry[i].y - scaled_geometry[i - 1].y);
dist += sqrt(xd * xd + yd * yd);
}
}
// treat lines as having the area of a circle with the line as diameter
extent = M_PI * (dist / 2) * (dist / 2);
}
// VT_POINT extent will be calculated in write_tile from the distance between adjacent features.
}
if (extent <= LLONG_MAX) {
sf.extent = (long long) extent;
} else {
sf.extent = LLONG_MAX;
}
if (sst->want_dist && sf.t == VT_POLYGON) {
*(sst->area_sum) += extent;
}
unsigned long long bbox_index;
long long midx, midy;
if (sf.t == VT_POINT) {
// keep old behavior, which loses one bit of precision at the bottom
midx = (sf.bbox[0] / 2 + sf.bbox[2] / 2) & ((1LL << 32) - 1);
midy = (sf.bbox[1] / 2 + sf.bbox[3] / 2) & ((1LL << 32) - 1);
} else {
// To reduce the chances of giving multiple polygons or linestrings
// the same index, use an arbitrary but predictable point from the
// geometry as the index point rather than the bounding box center
// as was previously used. The index point chosen comes from a hash
// of the overall geometry, so features with the same geometry will
// still have the same index. Specifically this avoids guessing
// too high a maxzoom for a data source that has a large number of
// LineStrings that map essentially the same route but with slight
// jitter between them, even though the geometries themselves are
// not very detailed.
size_t ix = 0;
for (size_t i = 0; i < scaled_geometry.size(); i++) {
ix += scaled_geometry[i].x + scaled_geometry[i].y;
}
if (scaled_geometry.size() != 0) {
ix = ix % scaled_geometry.size();
}
// If off the edge of the plane, mask to bring it back into the addressable area
midx = SHIFT_LEFT(scaled_geometry[ix].x) & ((1LL << 32) - 1);
midy = SHIFT_LEFT(scaled_geometry[ix].y) & ((1LL << 32) - 1);
}
bbox_index = encode_index(midx, midy);
if (sf.t == VT_POLYGON && additional[A_GENERATE_POLYGON_LABEL_POINTS]) {
drawvec dv = polygon_to_anchor(scaled_geometry);
if (dv.size() > 0) {
dv[0].x = SHIFT_LEFT(dv[0].x) & ((1LL << 32) - 1);
dv[0].y = SHIFT_LEFT(dv[0].y) & ((1LL << 32) - 1);
sf.label_point = encode_index(dv[0].x, dv[0].y);
}
}
if (additional[A_DROP_DENSEST_AS_NEEDED] ||
additional[A_COALESCE_DENSEST_AS_NEEDED] ||
additional[A_CLUSTER_DENSEST_AS_NEEDED] ||
additional[A_CALCULATE_FEATURE_DENSITY] ||
additional[A_DROP_SMALLEST_AS_NEEDED] ||
additional[A_COALESCE_SMALLEST_AS_NEEDED] ||
additional[A_DROP_FRACTION_AS_NEEDED] ||
additional[A_COALESCE_FRACTION_AS_NEEDED] ||
prevent[P_DYNAMIC_DROP] ||
additional[A_INCREASE_GAMMA_AS_NEEDED] ||
additional[A_GENERATE_POLYGON_LABEL_POINTS] ||
sst->uses_gamma ||
retain_points_multiplier > 1 ||
cluster_distance != 0) {
sf.index = bbox_index;
} else {
sf.index = 0;
}
if (sst->layermap->count(layername) == 0) {
sst->layermap->emplace(layername, layermap_entry(sst->layermap->size()));
}
auto ai = sst->layermap->find(layername);
if (ai != sst->layermap->end()) {
sf.layer = ai->second.id;
if (!sst->filters) {
if (sf.t == VT_POINT) {
ai->second.points++;
} else if (sf.t == VT_LINE) {
ai->second.lines++;
} else if (sf.t == VT_POLYGON) {
ai->second.polygons++;
}
}
} else {
fprintf(stderr, "Internal error: can't find layer name %s\n", layername.c_str());
exit(EXIT_IMPOSSIBLE);
}
for (auto &kv : set_attributes) {
bool found = false;
for (size_t i = 0; i < sf.full_keys.size(); i++) {
if (sf.full_keys[i] == kv.first) {
sf.full_values[i] = kv.second;
found = true;
break;
}
}
if (!found) {
sf.full_keys.push_back(kv.first);
sf.full_values.push_back(kv.second);
}
}
for (ssize_t i = (ssize_t) sf.full_keys.size() - 1; i >= 0; i--) {
coerce_value(sf.full_keys[i], sf.full_values[i].type, sf.full_values[i].s, sst->attribute_types);
if (prevent[P_SINGLE_PRECISION]) {
if (sf.full_values[i].type == mvt_double) {
// don't coerce integers to floats, since that is counterproductive
if (sf.full_values[i].s.find('.') != std::string::npos) {
sf.full_values[i].s = milo::dtoa_milo((float) atof(sf.full_values[i].s.c_str()));
}
}
}
if (sf.full_keys[i] == attribute_for_id) {
if (sf.full_values[i].type != mvt_double && !additional[A_CONVERT_NUMERIC_IDS]) {
static bool warned = false;
if (!warned) {
fprintf(stderr, "Warning: Attribute \"%s\"=\"%s\" as feature ID is not a number\n", sf.full_keys[i].c_str(), sf.full_values[i].s.c_str());
warned = true;
}
} else {
char *err;
long long id_value = strtoull(sf.full_values[i].s.c_str(), &err, 10);
if (err != NULL && *err != '\0') {
static bool warned_frac = false;
if (!warned_frac) {
fprintf(stderr, "Warning: Can't represent non-integer feature ID %s\n", sf.full_values[i].s.c_str());
warned_frac = true;
}
} else if (std::to_string(id_value) != strip_zeroes(sf.full_values[i].s)) {
static bool warned = false;
if (!warned) {
fprintf(stderr, "Warning: Can't represent too-large feature ID %s\n", sf.full_values[i].s.c_str());
warned = true;
}
} else {
sf.id = id_value;
sf.has_id = true;
sf.full_keys.erase(sf.full_keys.begin() + i);
sf.full_values.erase(sf.full_values.begin() + i);
continue;
}
}
}
if (sst->exclude_all) {
if (sst->include->count(sf.full_keys[i]) == 0) {
sf.full_keys.erase(sf.full_keys.begin() + i);
sf.full_values.erase(sf.full_values.begin() + i);
continue;
}
} else if (sst->exclude->count(sf.full_keys[i]) != 0) {
sf.full_keys.erase(sf.full_keys.begin() + i);
sf.full_values.erase(sf.full_values.begin() + i);
continue;
}
}
if (!sst->filters) {
for (size_t i = 0; i < sf.full_keys.size(); i++) {
auto ts = sst->layermap->find(layername);
add_to_tilestats(ts->second.tilestats, sf.full_keys[i], sf.full_values[i]);
}
}
for (size_t i = 0; i < sf.full_keys.size(); i++) {
sf.keys.push_back(addpool(r->poolfile, r->treefile, sf.full_keys[i].c_str(), mvt_string, r->key_dedup));
sf.values.push_back(addpool(r->poolfile, r->treefile, sf.full_values[i].s.c_str(), sf.full_values[i].type, r->value_dedup));
}
long long geomstart = r->geompos;
sf.geometry = scaled_geometry;
std::string feature = serialize_feature(&sf, SHIFT_RIGHT(*(sst->initial_x)), SHIFT_RIGHT(*(sst->initial_y)));
serialize_long_long(r->geomfile, feature.size(), &r->geompos, sst->fname);
fwrite_check(feature.c_str(), sizeof(char), feature.size(), r->geomfile, &r->geompos, sst->fname);
struct index index;
index.start = geomstart;
index.end = r->geompos;
index.segment = sst->segment;
index.seq = *(sst->layer_seq);
index.t = sf.t;
index.ix = bbox_index;
fwrite_check(&index, sizeof(struct index), 1, r->indexfile, &r->indexpos, sst->fname);
for (size_t i = 0; i < 2; i++) {
if (sf.bbox[i] < r->file_bbox[i]) {
r->file_bbox[i] = sf.bbox[i];
}
}
for (size_t i = 2; i < 4; i++) {
if (sf.bbox[i] > r->file_bbox[i]) {
r->file_bbox[i] = sf.bbox[i];
}
}
if (*(sst->progress_seq) % 10000 == 0) {
checkdisk(sst->readers);
if (!quiet && !quiet_progress && progress_time()) {
fprintf(stderr, "Read %.2f million features\r", *sst->progress_seq / 1000000.0);
fflush(stderr);
}
}
(*(sst->progress_seq))++;
(*(sst->layer_seq))++;
return 1;
}
void coerce_value(std::string const &key, int &vt, std::string &val, std::unordered_map<std::string, int> const *attribute_types) {
auto a = (*attribute_types).find(key);
if (a != attribute_types->end()) {
if (a->second == mvt_string) {
vt = mvt_string;
} else if (a->second == mvt_float) {
vt = mvt_double;
val = milo::dtoa_milo(atof(val.c_str()));
} else if (a->second == mvt_int) {
vt = mvt_double;
if (val.size() == 0) {
val = "0";
}
for (size_t ii = 0; ii < val.size(); ii++) {
char c = val[ii];
if (c < '0' || c > '9') {
val = std::to_string(round(atof(val.c_str())));
break;
}
}
} else if (a->second == mvt_bool) {
if (val == "false" || val == "0" || val == "null" || val.size() == 0 || (vt == mvt_double && atof(val.c_str()) == 0)) {
vt = mvt_bool;
val = "false";
} else {
vt = mvt_bool;
val = "true";
}
} else {
fprintf(stderr, "Can't happen: attribute type %d\n", a->second);
exit(EXIT_IMPOSSIBLE);
}
}
}