-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHome.py
198 lines (127 loc) · 5.78 KB
/
Home.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import yfinance as yf
import pandas as pd
import streamlit as st
from datetime import datetime , date,timedelta
import cufflinks as cf
# import matplotlib.pyplot as plt
# import plotly
import plotly.graph_objects as go
# import pandas_profiling
# from prophet import Prophet
from patterns import Company_Name
# import smtplib as smt
st.set_page_config(page_title="Stock Price Analysis" , page_icon=":bar_chart:", layout="wide")
st.markdown(
"""
# Stock Price App\n
Shown are the stock price data for the query companys!
"""
)
st.write('---')
#----------------------------------------------------------------Email sender --------------------------------
# def email_sender (sender_email,sender_email_id_password, receiver_email):
# s = smt.SMTP('smtp.gmail.com', 587)
# s.starttls()
# s.login(sender_email, sender_email_id_password)
# message = "HI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
# s.sendmail(sender_email, receiver_email,message)
# s.quit()
with st.sidebar:
st.sidebar.markdown(' # Stock Price Analysis ')
st.sidebar.title(f"Welcome ")
# get current datetime
dt = datetime.now()
DAY = dt.strftime('%A')
if DAY == 'Saturday' or DAY == 'Sunday':
start_date = date.today() - timedelta(days=3)
end_date = date.today() - timedelta(days=2)
else:
start_date = date.today()
end_date = date.today() + timedelta(days=1)
start= st.sidebar.date_input("start date", start_date)
end = st.sidebar.date_input("End date", end_date)
# company = ('ADANIENT.NS', 'ADANIPORTS.NS', 'APOLLOHOSP.NS', 'ASIANPAINT.NS', 'AXISBANK.NS', 'MARUTI.NS', 'BAJFINANCE.NS', 'BAJAJFINSV.NS', 'BPCL.NS', 'BRITANNIA.NS', 'CIPLA.NS', 'COALINDIA.NS', 'DIVISLAB.NS', 'DRREDDY.NS', 'EICHERMOT.NS', 'GRASIM.NS', 'HCLTECH.NS', 'HDFCBANK.NS', 'HDFCLIFE.NS', 'HEROMOTOCO.NS', 'HINDALCO.NS', 'HINDUNILVR.NS', 'HDFC.NS', 'ICICIBANK.NS', 'ITC.NS', 'INDUSINDBK.NS', 'INFY.NS', 'JSWSTEEL.NS', 'KOTAKBANK.NS', 'LT.NS', 'M&M.NS', 'NTPC.NS', 'NESTLEIND.NS', 'ONGC.NS', 'POWERGRID.NS', 'SBILIFE.NS', 'SBIN.NS', 'SUNPHARMA.NS', 'TCS.NS', 'TATACONSUM.NS', 'TATAMTRDVR.NS', 'TECHM.NS', 'TITAN.NS', 'UPL.NS', 'ULTRACEMCO.NS', 'WIPRO.NS')
# problem_list = ['AIRTELPP.NS','RELIANCEP1.NS','TATASTLPP.NS',]
company = list(Company_Name.values())
companies = Company_Name.keys()
# st.write(company)
# Select ticker symbol
Symbol = st.sidebar.selectbox('Stock ticker', companies)
tickerSymbol = Company_Name.get(Symbol)
#period and timeframe
periods_part,timeframes_part = st.columns(2)
with periods_part:
periods = st.sidebar.selectbox('Period', ('1d', '5d', '1y'))
with timeframes_part:
timeframes = st.sidebar.selectbox('Timeframe', ('1m', '5m', '15m', '30m', '1h', '2h', '4h'))
# Get ticker data
tickerData = yf.Ticker(tickerSymbol)
def app():
# get the historical prices for this ticke
tickerDf = tickerData.history(period=periods,interval=timeframes, start=start, end=end)
tickerDf.reset_index(inplace=True)
# #coverting time zone to date :
# tickerDf['Year'] = tickerDf['Date'].apply(lambda x:str(x)[-4:])
# tickerDf['Month'] = tickerDf['Date'].apply(lambda x:str(x)[-6:-4:])
# tickerDf['Day'] = tickerDf['Date'].apply(lambda x:str(x)[-6:])
# tickerDf['date'] = pd.DataFrame(tickerDf['Year'] +'-' +tickerDf['Month'] +'-' + tickerDf['Day'])
st.header('**Stock data**')
st.table(tickerDf)
# dividends
# dividends = tickerDf.Dividends
dividend,download = st.columns(2)
with dividend :
if st.button('BOLLINGER BAND'):
# Bollinger bands
st.header('**Bollinger Bands**')
qf = cf.QuantFig(tickerDf, title='First Quant Figure',
legend='top', name='GS')
qf.add_bollinger_bands()
fig = qf.iplot(asFigure=True)
st.plotly_chart(fig)
with download:
# download csv
@st.cache_data
def convert_df(df):
return df.to_csv().encode('utf-8')
csv = convert_df(tickerDf)
download = st.download_button(
label="Download data as CSV",
data=csv,
file_name='stock.csv',
mime='text/csv',
)
# plot the graph
def plot_raw_data():
fig = go.Figure()
fig.add_trace(go.Scatter( x=tickerDf['Datetime'], y=tickerDf['Open'], name="stock_open"))
fig.add_trace(go.Scatter(
x=tickerDf['Datetime'], y=tickerDf['Close'], name="stock_close"))
fig.layout.update(
title_text='Time Series data with Rangeslider', xaxis_rangeslider_visible=True)
st.plotly_chart(fig , use_container_width=True)
plot_raw_data()
# ADX_LIST = []
# macd(company)
# -----------------------------------------------------Predict forecast with Prophet.
# #
# df_train = tickerDf[['Datetime','Close']]
# df_train = df_train.rename(columns={"Datetime": "ds", "Close": "y"})
# m = Prophet()
# m.fit(df_train)
# future = m.make_future_dataframe(periods=(start_date - end_date))
# forecast = m.predict(future)
# # Show and plot forecast
# st.subheader('Forecast data')
# st.write(forecast.tail())
# n_years = st.slider('Years of prediction:', 1, 4)
# period = n_years * 365
# st.write(f'Forecast plot for {n_years} years')
# fig1 = m.plot(forecast)
# st.plotly_chart(fig1)
# st.write("Forecast components")
# fig2 = m.plot_components(forecast)
# st.write(fig2)
#describe the bollinger band on the graph
if __name__== '__main__':
app()