forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomographyNet.cu
95 lines (73 loc) · 3.22 KB
/
homographyNet.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
/*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "cudaUtility.h"
// rgbaToGray
__device__ inline float rgbaToGray( const float4& rgba )
{
return rgba.x * 0.2989f + rgba.y * 0.5870f + rgba.z * 0.1140f;
}
// normalize to [-1,1]
__device__ inline float norm1( float value )
{
return value / 255.0f * 2.0f - 1.0f;
}
// gpuPreHomographyNet
__global__ void gpuPreHomographyNet( float2 scale, float4* in_A, float4* in_B, int in_width,
float* output, int out_width, int out_height )
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
const int n = out_width * out_height;
if( x >= out_width || y >= out_height )
return;
// scale coordinates to input
const int dx = ((float)x * scale.x);
const int dy = ((float)y * scale.y);
// convert inputs to grayscale
const int in_idx = dy * in_width + dx;
const float4 rgba_A = in_A[in_idx];
const float4 rgba_B = in_B[in_idx];
const float gray_A = rgbaToGray(rgba_A);
const float gray_B = rgbaToGray(rgba_B);
const float norm_A = norm1(gray_A);
const float norm_B = norm1(gray_B);
// concatenate the images
output[n * 0 + y * out_width + x] = norm_A;
output[n * 1 + y * out_width + x] = norm_B;
}
// cudaPreHomographyNet
cudaError_t cudaPreHomographyNet( float4* inputA, float4* inputB, size_t inputWidth, size_t inputHeight,
float* output, size_t outputWidth, size_t outputHeight,
cudaStream_t stream )
{
if( !inputA || !inputB || !output )
return cudaErrorInvalidDevicePointer;
if( inputWidth == 0 || outputWidth == 0 || inputHeight == 0 || outputHeight == 0 )
return cudaErrorInvalidValue;
const float2 scale = make_float2( float(inputWidth) / float(outputWidth),
float(inputHeight) / float(outputHeight) );
// launch kernel
const dim3 blockDim(8, 8);
const dim3 gridDim(iDivUp(outputWidth,blockDim.x), iDivUp(outputHeight,blockDim.y));
gpuPreHomographyNet<<<gridDim, blockDim, 0, stream>>>(scale, inputA, inputB, inputWidth, output, outputWidth, outputHeight);
return CUDA(cudaGetLastError());
}