forked from decodingml/llm-twin-course
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Makefile
113 lines (80 loc) · 5.38 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
include .env
$(eval export $(shell sed -ne 's/ *#.*$$//; /./ s/=.*$$// p' .env))
PYTHONPATH := $(shell pwd)/src
install: # Create a local Poetry virtual environment and install all required Python dependencies.
poetry env use 3.11
poetry install --without superlinked_rag
help:
@grep -E '^[a-zA-Z0-9 -]+:.*#' Makefile | sort | while read -r l; do printf "\033[1;32m$$(echo $$l | cut -f 1 -d':')\033[00m:$$(echo $$l | cut -f 2- -d'#')\n"; done
# ======================================
# ------- Docker Infrastructure --------
# ======================================
local-start: # Build and start your local Docker infrastructure.
docker compose -f docker-compose.yml up --build -d
local-stop: # Stop your local Docker infrastructure.
docker compose -f docker-compose.yml down --remove-orphans
# ======================================
# ---------- Crawling Data -------------
# ======================================
local-test-medium: # Make a call to your local AWS Lambda (hosted in Docker) to crawl a Medium article.
curl -X POST "http://localhost:9010/2015-03-31/functions/function/invocations" \
-d '{"user": "Paul Iusztin", "link": "https://medium.com/decodingml/an-end-to-end-framework-for-production-ready-llm-systems-by-building-your-llm-twin-2cc6bb01141f"}'
local-test-github: # Make a call to your local AWS Lambda (hosted in Docker) to crawl a Github repository.
curl -X POST "http://localhost:9010/2015-03-31/functions/function/invocations" \
-d '{"user": "Paul Iusztin", "link": "https://github.com/decodingml/llm-twin-course"}'
local-ingest-data: # Ingest all links from data/links.txt by calling your local AWS Lambda hosted in Docker.
while IFS= read -r link; do \
echo "Processing: $$link"; \
curl -X POST "http://localhost:9010/2015-03-31/functions/function/invocations" \
-d "{\"user\": \"Paul Iusztin\", \"link\": \"$$link\"}"; \
echo "\n"; \
sleep 2; \
done < data/links.txt
# ======================================
# -------- RAG Feature Pipeline --------
# ======================================
local-test-retriever: # Test the RAG retriever using your Poetry env
cd src/feature_pipeline && poetry run python -m retriever
local-generate-instruct-dataset: # Generate the fine-tuning instruct dataset using your Poetry env.
cd src/feature_pipeline && poetry run python -m generate_dataset.generate
# ===================================================
# -- AWS SageMaker: Training & Inference pipelines --
# ===================================================
create-sagemaker-execution-role: # Create an AWS SageMaker execution role you need for the training and inference pipelines.
cd src && PYTHONPATH=$(PYTHONPATH) poetry run python -m core.aws.create_execution_role
start-training-pipeline-dummy-mode: # Start the training pipeline in AWS SageMaker.
cd src/training_pipeline && poetry run python run_on_sagemaker.py --is-dummy
start-training-pipeline: # Start the training pipeline in AWS SageMaker.
cd src/training_pipeline && poetry run python run_on_sagemaker.py
local-start-training-pipeline: # Start the training pipeline in your Poetry env.
cd src/training_pipeline && poetry run python -m finetune
deploy-inference-pipeline: # Deploy the inference pipeline to AWS SageMaker.
cd src/inference_pipeline && poetry run python -m aws.deploy_sagemaker_endpoint
call-inference-pipeline: # Call the inference pipeline client using your Poetry env.
cd src/inference_pipeline && poetry run python -m main
delete-inference-pipeline-deployment: # Delete the deployment of the AWS SageMaker inference pipeline.
cd src/inference_pipeline && PYTHONPATH=$(PYTHONPATH) poetry run python -m aws.delete_sagemaker_endpoint
local-start-ui: # Start the Gradio UI for chatting with your LLM Twin using your Poetry env.
cd src/inference_pipeline && poetry run python -m ui
evaluate-llm: # Run evaluation tests on the LLM model's performance using your Poetry env.
cd src/inference_pipeline && poetry run python -m evaluation.evaluate
evaluate-rag: # Run evaluation tests specifically on the RAG system's performance using your Poetry env.
cd src/inference_pipeline && poetry run python -m evaluation.evaluate_rag
evaluate-llm-monitoring: # Run evaluation tests for monitoring the LLM system using your Poetry env.
cd src/inference_pipeline && poetry run python -m evaluation.evaluate_monitoring
# ======================================
# ------ Superlinked Bonus Series ------
# ======================================
install-superlinked: # Create a local Poetry virtual environment and install all required Python dependencies (with Superlinked enabled).
poetry env use 3.11
poetry install
local-start-superlinked: # Build and start local infrastructure used in the Superlinked series.
docker compose -f docker-compose-superlinked.yml up --build -d
local-stop-superlinked: # Stop local infrastructure used in the Superlinked series.
docker compose -f docker-compose-superlinked.yml down --remove-orphans
test-superlinked-server: # Ingest dummy data into the local superlinked server to check if it's working.
poetry run python src/bonus_superlinked_rag/local_test.py
local-bytewax-superlinked: # Run the Bytewax streaming pipeline powered by Superlinked.
RUST_BACKTRACE=full poetry run python -m bytewax.run src/bonus_superlinked_rag/main.py
local-test-retriever-superlinked: # Call the retrieval module and query the Superlinked server & vector DB
docker exec -it llm-twin-bytewax-superlinked python -m retriever