-
Notifications
You must be signed in to change notification settings - Fork 27
/
train_frames.py
377 lines (332 loc) · 17.5 KB
/
train_frames.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import time
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim, quaternion_loss, d_xyz_gt, d_rot_gt
from gaussian_renderer import render, network_gui
import sys
import json
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from utils.debug_utils import save_tensor_img
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
import re
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training_one_frame(dataset, opt, pipe, load_iteration, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
start_time=time.time()
last_s1_res = []
last_s2_res = []
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree,opt.rotate_sh)
scene = Scene(dataset, gaussians, load_iteration=load_iteration, shuffle=False)
gaussians.training_one_frame_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
s1_start_time=time.time()
# Train the NTC
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
# gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Query the NTC
gaussians.query_ntc()
loss = torch.tensor(0.).cuda()
# A simple
for batch_iteraion in range(opt.batch_size):
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
render_pkg = render(viewpoint_cam, gaussians, pipe, background)
image, depth, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["depth"],render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
Lds = torch.tensor(0.).cuda()
loss += (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss/=opt.batch_size
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
s1_res = training_report(tb_writer, iteration, Ll1, Lds, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if s1_res is not None:
last_s1_res.append(s1_res)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration=iteration, save_type='all')
# Tracking Densification Stats
if iteration > opt.densify_from_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
# Optimizer step
if iteration < opt.iterations:
gaussians.ntc_optimizer.step()
gaussians.ntc_optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.output_path + "/chkpnt" + str(iteration) + ".pth")
s1_end_time=time.time()
# Densify
if(opt.iterations_s2>0):
# Dump the NTC
scene.dump_NTC()
# Update Gaussians by NTC
gaussians.update_by_ntc()
# Prune, Clone and setting up
gaussians.training_one_frame_s2_setup(opt)
progress_bar = tqdm(range(opt.iterations, opt.iterations + opt.iterations_s2), desc="Training progress of Stage 2")
# Train the new Gaussians
for iteration in range(opt.iterations + 1, opt.iterations + opt.iterations_s2 + 1):
iter_start.record()
# Update Learning Rate
# gaussians.update_learning_rate(iteration)
loss = torch.tensor(0.).cuda()
for batch_iteraion in range(opt.batch_size):
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
render_pkg = render(viewpoint_cam, gaussians, pipe, background)
image, depth, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["depth"],render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss += (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss/=opt.batch_size
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if (iteration - opt.iterations) % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations + opt.iterations_s2:
progress_bar.close()
# Log and save
s2_res = training_report(tb_writer, iteration, Ll1, Lds, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if s2_res is not None:
last_s2_res.append(s2_res)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration=iteration, save_type='added')
# Densification
if (iteration - opt.iterations) % opt.densification_interval == 0:
gaussians.adding_and_prune(opt,scene.cameras_extent)
# Optimizer step
if iteration < opt.iterations + opt.iterations_s2:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
s2_end_time=time.time()
# 计算总训练时间
pre_time = s1_start_time - start_time
s1_time = s1_end_time - s1_start_time
s2_time = s2_end_time - s1_end_time
return last_s1_res, last_s2_res, pre_time, s1_time, s2_time
def prepare_output_and_logger(args):
if not args.output_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.output_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.output_path))
os.makedirs(args.output_path, exist_ok = True)
with open(os.path.join(args.output_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.output_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, Lds, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
last_test_psnr=0.0
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/ds_loss', Lds.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
# {'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]}
)
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
render_pkg = renderFunc(viewpoint, scene.gaussians, *renderArgs)
# if scene.gaussians._added_mask is not None:
# added_pkg = renderFunc(viewpoint, scene.gaussians.get_masked_gaussian(scene.gaussians._added_mask), *renderArgs)
image, depth = torch.clamp(render_pkg["render"], 0.0, 1.0), render_pkg["depth"]
depth_vis=depth/(depth.max()+1e-5)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_image(config['name'] + "_view_{}/render".format(viewpoint.image_name), image, global_step=iteration)
# tb_writer.add_image(config['name'] + "_view_{}/diff".format(viewpoint.image_name), (gt_image-image).abs().mean(dim=0, keepdim=True), global_step=iteration)
# tb_writer.add_image(config['name'] + "_view_{}/depth".format(viewpoint.image_name), depth_vis, global_step=iteration)
# if scene.gaussians._added_mask is not None:
# tb_writer.add_image(config['name'] + "_view_{}/added_gaussians".format(viewpoint.image_name), torch.clamp(added_pkg["render"], 0.0, 1.0), global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_image(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image, global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if config['name'] == 'test':
last_test_psnr = psnr_test
last_test_image = image
last_gt = gt_image
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
return {'last_test_psnr':last_test_psnr.cpu().numpy()
, 'last_test_image':last_test_image.cpu()
, 'last_points_num':scene.gaussians.get_xyz.shape[0]
# , 'last_gt':last_gt.cpu()
}
def train_one_frame(lp,op,pp,args):
args.save_iterations.append(args.iterations + args.iterations_s2)
if args.depth_smooth==0:
args.bwd_depth=False
print("Optimizing " + args.output_path)
res_dict={}
if(args.opt_type=='3DGStream'):
s1_ress, s2_ress, pre_time, s1_time, s2_time = training_one_frame(lp.extract(args), op.extract(args), pp.extract(args), args.load_iteration, args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)
# All done
print("\nTraining complete.")
print(f"Preparation: {pre_time}")
if pre_time > 2:
print(f"If preparation is time-consuming, consider down-scaling the images BEFORE running 3DGStream.")
print(f"Stage 1: {s1_time}")
print(f"Stage 2: {s2_time}")
if s1_ress !=[]:
for idx, s1_res in enumerate(s1_ress):
save_tensor_img(s1_res['last_test_image'],os.path.join(args.output_path,f'{idx}_rendering1'))
res_dict[f'stage1/psnr_{idx}']=s1_res['last_test_psnr']
res_dict[f'stage1/points_num_{idx}']=s1_res['last_points_num']
res_dict[f'stage1/time']=s1_time
if s2_ress !=[]:
for idx, s2_res in enumerate(s2_ress):
save_tensor_img(s2_res['last_test_image'],os.path.join(args.output_path,f'{idx}_rendering2'))
res_dict[f'stage2/psnr_{idx}']=s2_res['last_test_psnr']
res_dict[f'stage2/points_num_{idx}']=s2_res['last_points_num']
res_dict[f'stage2/time']=s2_time
return res_dict
def train_frames(lp, op, pp, args):
# Initialize system state (RNG)
safe_state(args.quiet)
video_path=args.video_path
output_path=args.output_path
model_path=args.model_path
load_iteration = args.load_iteration
sub_paths = os.listdir(video_path)
pattern = re.compile(r'frame(\d+)')
frames = sorted(
(item for item in sub_paths if pattern.match(item)),
key=lambda x: int(pattern.match(x).group(1))
)
frames=frames[args.frame_start:args.frame_end]
if args.frame_start==1:
args.load_iteration = args.first_load_iteration
for frame in frames:
start_time = time.time()
args.source_path = os.path.join(video_path, frame)
args.output_path = os.path.join(output_path, frame)
args.model_path = model_path
train_one_frame(lp,op,pp,args)
print(f"Frame {frame} finished in {time.time()-start_time} seconds.")
model_path = args.output_path
args.load_iteration = load_iteration
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--frame_start', type=int, default=1)
parser.add_argument('--frame_end', type=int, default=150)
parser.add_argument('--load_iteration', type=int, default=None)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[1, 50, 100])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[1, 50, 100])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--read_config", action='store_true', default=False)
parser.add_argument("--config_path", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
if args.output_path == "":
args.output_path=args.model_path
if args.read_config and args.config_path is not None:
with open(args.config_path, 'r') as f:
config = json.load(f)
for key, value in config.items():
if key not in ["output_path", "source_path", "model_path", "video_path", "debug_from"]:
setattr(args, key, value)
serializable_namespace = {k: v for k, v in vars(args).items() if isinstance(v, (int, float, str, bool, list, dict, tuple, type(None)))}
json_namespace = json.dumps(serializable_namespace)
os.makedirs(args.output_path, exist_ok = True)
with open(os.path.join(args.output_path, "cfg_args.json"), 'w') as f:
f.write(json_namespace)
# train_one_frame(lp,op,pp,args)
train_frames(lp,op,pp,args)