generated from AlexandaJerry/whisper-vits-japanese
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauto.py
183 lines (151 loc) · 6.65 KB
/
auto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from unittest import skip
import pandas as pd
import os, io, re, sys, time, datetime
from glob import glob
import numpy as np
from util.creating_directories import create_directories
from util.convert_srt_to_csv import change_encoding
from util.convert_srt_to_csv import convert_srt_to_csv
from util.change_sample_rate import pre_process_audio
#from util.extract_audio import wmv_to_wav
#from util.extract_audio import mp4_to_wav
from util.slice_audio import split_files
from util.create_DS_csv import create_DS_csv
from util.merge_csv import merge_csv
from util.merge_transcripts_and_files import merge_transcripts_and_wav_files
from util.clean import clean_unwanted_characters
from util.split import split_dataset
from util.audio_metrics import audio_metrics
#from util.trans_numbers import translate_numbers
start_time = time.time()
#Check if srt_files directory exists and contains srt files
srt_path = './srt_files/'
if os.path.exists(srt_path):
print('Folder %s exists.. continuing processing..' %srt_path)
else:
print('Folder "srt_files" is missing')
try:
os.mkdir(srt_path)
except OSError:
print('Creation of directory %s failed' %srt_path)
else:
print('Successfully created the directory %s' %srt_path)
print('--> Please add srt files to folder %s' %srt_path)
#Check if audio directory exists and contains wmv or wav files
audio_path = './audio/'
if os.path.exists(audio_path):
print('Folder %s exists.. continuing processing..' %audio_path)
else:
print('Folder "audio" is missing')
try:
os.mkdir(audio_path)
except OSError:
print('Creation of directory %s failed' %audio_path)
else:
print('Successfully created the directory %s' %audio_path)
print('--> Please add wav or wmv files to folder %s' %audio_path)
srt_counter = len(glob('./srt_files/' + '*.srt'))
if srt_counter == 0:
print('!!! Please add srt_file(s) to %s-folder' %srt_path)
create_directories()
#Changing encoding from "cp1252" (a.k.a Windows 1252)to "utf-8-sig"
print('Encoding srt_file(s) to utf8...')
for srt in glob('./srt_files/*.srt'):
change_encoding(srt)
print('Encoding of %s-file(s) changed' %srt_counter)
print('---------------------------------------------------------------------')
print('Extracting information from srt_file(s) to csv_files')
for file in glob('./srt_files/*.srt'):
convert_srt_to_csv(file)
print('%s-file(s) converted and saved as csv-files to ./csv' %srt_counter)
print('---------------------------------------------------------------------')
pre_process_audio(audio_path)
print('Pre-processing of audio files is complete.')
print('---------------------------------------------------------------------')
#now slice audio according to start- and end-times in csv
print('Slicing audio according to start- and end_times of transcript_csvs...')
for item in glob('./ready_for_slice/*.csv'):
wav_item = item.replace('.csv','.wav')
if os.path.exists(wav_item):
split_files(item, wav_item)
else:
next
wav_counter = len(glob('./sliced_audio/' + '*.wav'))
print('Slicing complete. {} files in dir "sliced_audio"'.format(wav_counter))
print('---------------------------------------------------------------------')
create_DS_csv('./sliced_audio/')
print('DS_csv with Filenames - and sizes created.')
print('---------------------------------------------------------------------')
#now join all seperate csv files
merge_csv('./ready_for_slice/')
print('Merged csv with all transcriptions created.')
print('---------------------------------------------------------------------')
transcript_path = './merged_csv/Full_Transcript.csv'
DS_csv = './merged_csv/Filepath_Filesize.csv'
df_final = pd.DataFrame()
df_transcripts = pd.read_csv(transcript_path)
df_files = pd.read_csv(DS_csv)
#by splitting the path at / and then choosing -1, the filename can be extracted
def remove_path(path):
path = path.split('/')[-1]
return path
df_files['id'] = df_files['wav_filename'].apply(remove_path)
#filter out duration of less than 10 seconds
def convert(duration):
time = float(duration)
return time
df_files['duration'] = df_files['duration'].apply(convert)
#drop unnecessary columns
df_transcripts.drop(['start_times','end_times'], axis=1, inplace=True)
df_files['id'] = df_files['id'].replace('.wav', '', regex=True)
#merge on column id
df_final = pd.merge(df_transcripts, df_files, on='id')
df_final.drop(['id'], axis=1, inplace=True)
#rearrange columns
df_final = df_final[['wav_filename', 'duration', 'transcript']]
df_final.to_csv('./merged_csv/DS_training_final.csv', header=True, index=False, encoding='utf-8-sig')
print('Final DS csv generated.')
print('---------------------------------------------------------------------')
final_csv_path = 'DS_training_final.csv'
clean_unwanted_characters(final_csv_path)
print('Unwanted characters cleaned.')
print('---------------------------------------------------------------------')
#write transcript to text-file for language model
df_text = pd.read_csv('./merged_csv/DS_training_final_merged.csv')
df_text[['wav_filename','transcript']].to_csv('./filelists/train_filelist.txt', header=None, index=None, mode='w', sep='|')
df_text[['wav_filename','transcript']].to_csv('./filelists/val_filelist.txt', header=None, index=None, mode='w', sep='|')
import shutil,os,re
slice_path = './ready_for_slice'
merged_csv_files = './merged_csv'
final_csv_path = './final_csv'
# #shutil.rmtree(slice_path)
if os.path.exists(slice_path):
try:
shutil.rmtree(slice_path)
except:
skip
if os.path.exists(final_csv_path):
try:
shutil.rmtree(final_csv_path)
except:
skip
if os.path.exists(merged_csv_files):
try:
shutil.rmtree(merged_csv_files)
except:
skip
#evaluate the scripts execution time
end_time = time.time()
exec_time = str(datetime.timedelta(seconds=end_time-start_time))
print('The script took {} to run'.format(exec_time))
print('********************************************************************************************************')
'''
Sources:
- Downsampling wav-files: https://stackoverflow.com/questions/30619740/python-downsampling-wav-audio-file
- Converting to 16-bit files: https://stackoverflow.com/questions/44812553/how-to-convert-a-24-bit-wav-file-to-16-or-32-bit-files-in-python3
- Extract audio (wav) from wmv or mp4: https://zulko.github.io/moviepy/
- Extract audio (wav) from wmv or mp4: https://medium.com/@steadylearner/how-to-extract-audio-from-the-video-with-python-aea325f434b6
- Dataset-split: https://stackoverflow.com/questions/38250710/how-to-split-data-into-3-sets-train-validation-and-test
Further information:
- README.md (https://github.com/tobiasrordorf/SRT-to-CSV-and-audio-split)
'''