forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplex.ml
147 lines (121 loc) · 4.7 KB
/
complex.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
(* abstraction layer for complex operations *)
open Littlesimp
open Expr
(* type of complex expressions *)
type expr = CE of Expr.expr * Expr.expr
let two = CE (makeNum Number.two, makeNum Number.zero)
let one = CE (makeNum Number.one, makeNum Number.zero)
let i = CE (makeNum Number.zero, makeNum Number.one)
let zero = CE (makeNum Number.zero, makeNum Number.zero)
let make (r, i) = CE (r, i)
let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b)
let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
makeNum Number.zero)
let inverse_int_sqrt n =
CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
makeNum Number.zero)
let int_sqrt n =
CE (makeNum (Number.sqrt (Number.of_int n)),
makeNum Number.zero)
let nan x = CE (NaN x, makeNum Number.zero)
let half = inverse_int 2
let times3x3 (CE (a, b)) (CE (c, d)) =
CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
makeTimes (b, makePlus [c; makeUminus (d)])],
makePlus [makeTimes (a, makePlus [c; d]);
makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
let times (CE (a, b)) (CE (c, d)) =
if not !Magic.threemult then
CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
makePlus [makeTimes (a, d); makeTimes (b, c)])
else if is_constant c && is_constant d then
times3x3 (CE (a, b)) (CE (c, d))
else (* hope a and b are constant expressions *)
times3x3 (CE (c, d)) (CE (a, b))
let ctimes (CE (a, _)) (CE (c, _)) =
CE (CTimes (a, c), makeNum Number.zero)
let ctimesj (CE (a, _)) (CE (c, _)) =
CE (CTimesJ (a, c), makeNum Number.zero)
(* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
let exp n i =
let (c, s) = Number.cexp n i
in CE (makeNum c, makeNum s)
(* various trig functions evaluated at (2*pi*i/n * m) *)
let sec n m =
let (c, s) = Number.cexp n m
in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
let csc n m =
let (c, s) = Number.cexp n m
in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
let tan n m =
let (c, s) = Number.cexp n m
in CE (makeNum (Number.div s c), makeNum Number.zero)
let cot n m =
let (c, s) = Number.cexp n m
in CE (makeNum (Number.div c s), makeNum Number.zero)
(* complex sum *)
let plus a =
let rec unzip_complex = function
[] -> ([], [])
| ((CE (a, b)) :: s) ->
let (r,i) = unzip_complex s
in
(a::r), (b::i) in
let (c, d) = unzip_complex a in
CE (makePlus c, makePlus d)
(* extract real/imaginary *)
let real (CE (a, b)) = CE (a, makeNum Number.zero)
let imag (CE (a, b)) = CE (b, makeNum Number.zero)
let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
let conj (CE (a, b)) = CE (a, makeUminus b)
(* abstraction of sum_{i=0}^{n-1} *)
let sigma a b f = plus (List.map f (Util.interval a b))
(* store and assignment operations *)
let store_real v (CE (a, b)) = Expr.Store (v, a)
let store_imag v (CE (a, b)) = Expr.Store (v, b)
let store (vr, vi) x = (store_real vr x, store_imag vi x)
let assign_real v (CE (a, b)) = Expr.Assign (v, a)
let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
(************************
shortcuts
************************)
let (@*) = times
let (@+) a b = plus [a; b]
let (@-) a b = plus [a; uminus b]
(* type of complex signals *)
type signal = int -> expr
(* make a finite signal infinite *)
let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
let hermitian n a =
Util.array n (fun i ->
if (i = 0) then real (a 0)
else if (i < n - i) then (a i)
else if (i > n - i) then conj (a (n - i))
else real (a i))
let antihermitian n a =
Util.array n (fun i ->
if (i = 0) then iimag (a 0)
else if (i < n - i) then (a i)
else if (i > n - i) then uminus (conj (a (n - i)))
else iimag (a i))