forked from FFTW/fftw3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimd-mips_ps.h
222 lines (185 loc) · 5.2 KB
/
simd-mips_ps.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/*
* Copyright (c) 2007 Codesourcery
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifndef _SIMD_SIMD_MIPS_PS_H
#define _SIMD_SIMD_MIPS_PS_H
#ifndef FFTW_SINGLE
#error "MIPS PS only works in single precision"
#endif
#define VL 1 /* SIMD complex vector length */
#define ALIGNMENT 8 /* alignment for LD/ST */
#define ALIGNMENTA 8 /* alignment for LDA/STA */
#define SIMD_VSTRIDE_OKA(x) 1
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OKA
/* Codelets allows stores to be performed in one of two ways:
- Values can be written back as they are generated. This potentially
lowers register pressure by freeing the register holding the value
for reuse.
- Values can be written back in groups to consecutive addresses.
This potentially lowers the cost of address generation.
*/
#define USE_MULTIPLE_STORES 0
#define RIGHT_CPU X(have_mips_ps)
extern int RIGHT_CPU(void);
#if defined(__mips__)
#include <mips_ps.h>
typedef psingle V;
#define LDK(x) x
#define DVK(var, val) \
const V var = _mips64_lc(val)
#define VADD _mips64_add
#define VSUB _mips64_sub
#define VMUL _mips64_mul
#define VFMS _mips64_msub
#define VFMA _mips64_madd
#define VFNMS _mips64_nmsub
#define UNPCKL _mips64_pl
#define UNPCKH _mips64_pu
#define STOREL _mips64_sl
#define STOREH _mips64_su
#define SHUFFLE _mips64_shuffle
#define FLIP_RI SHUFFLE
#define VCONJ _mips64_chs_i
#define VFMACONJ(b,c) VADD(VCONJ(b),c)
#define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
(void)aligned_like;
(void)ivs;
return _mips64_ld((V*)x);
}
#define LD LDA
static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like;
(void)ovs;
_mips64_st(x, v);
}
#define ST STA
#if USE_MULTIPLE_STORES
# define STM2(x,v,ovs,a) /* nop */
static inline void STN2(R *x, V v0, V v1, INT ovs)
{
(void)ovs;
STA(x, v0, 0, 0);
STA(x+2, v1, 0, 0);
}
#else /* !USE_MULTIPLE_STORES */
# define STM2 STA
# define STN2(x,v0,v1,ovs) /* nop */
#endif
#if USE_MULTIPLE_STORES
# define STM4(x,v,ovs,a) /* nop */
static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
{
R *x_ptr = x;
STA(x_ptr, UNPCKL(v0,v1), 0, 0); x_ptr += ovs;
STA(x_ptr, UNPCKL(v2,v3), 0, 0); x_ptr += ovs;
STA(x_ptr, UNPCKH(v0,v1), 0, 0); x_ptr += ovs;
STA(x_ptr, UNPCKH(v2,v3), 0, 0);
}
#else /* !USE_MULTIPLE_STORES */
static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
STOREL(x, v);
STOREH(x + ovs, v);
}
# define STN4(x, v0, v1, v2, v3, ovs) /* nop */
#endif
static inline V VBYI(V x)
{
x = VCONJ(x);
x = FLIP_RI(x);
return x;
}
#define VFMAI(b, c) VADD(c, VBYI(b))
#define VFNMSI(b, c) VSUB(c, VBYI(b))
static inline V VZMUL(V tx, V sr)
{
V tr = UNPCKL(tx, tx);
V ti = UNPCKH(tx, tx);
tr = VMUL(sr, tr);
sr = VBYI(sr);
return VFMA(ti,sr,tr);
}
static inline V VZMULJ(V tx, V sr)
{
V tr = UNPCKL(tx, tx);
V ti = UNPCKH(tx, tx);
tr = VMUL(sr, tr);
sr = VBYI(sr);
return VFNMS(ti,sr,tr);
}
/* twiddle storage #1: compact, slower */
#define VTW1(v,x) {TW_CEXP, v, x}
#define TWVL1 1
static inline V BYTW1(const R *t, V sr)
{
V tx = LD(t, 1, t);
return VZMUL(tx, sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
V tx = LD(t, 1, t);
return VZMULJ(tx, sr);
}
/* twiddle storage #2: twice the space, faster (when in cache) */
#define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
#define TWVL2 2
static inline V BYTW2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFMA(tr,sr,VMUL(ti,si));
}
static inline V BYTWJ2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFNMS(ti,si, VMUL(tr,sr));
}
static inline V VZMULI(V tx, V sr)
{
V tr = UNPCKL(tx, tx);
V ti = UNPCKH(tx, tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMS(tr,sr,ti);
}
static inline V VZMULIJ(V tx, V sr)
{
V tr = UNPCKL(tx, tx);
V ti = UNPCKH(tx, tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMA(tr,sr,ti);
}
/* twiddle storage #3 */
#define VTW3(v,x) VTW1(v,x)
#define TWVL3 TWVL1
/* twiddle storage for split arrays */
#define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
#define TWVLS (2 * VL)
#endif /* defined(__mips__) */
#endif /* _SIMD_SIMD_MIPS_PS_H */