Skip to content

Latest commit

 

History

History

gn+ws

Weight Standardization

Introduction

@article{weightstandardization,
  author    = {Siyuan Qiao and Huiyu Wang and Chenxi Liu and Wei Shen and Alan Yuille},
  title     = {Weight Standardization},
  journal   = {arXiv preprint arXiv:1903.10520},
  year      = {2019},
}

Results and Models

Faster R-CNN

Backbone Style Normalization Lr schd box AP mask AP Download
R-50-FPN pytorch GN 1x 37.8 - -
R-50-FPN pytorch GN+WS 1x 38.9 - model
R-101-FPN pytorch GN 1x 39.8 - -
R-101-FPN pytorch GN+WS 1x 41.4 - model
X-50-32x4d-FPN pytorch GN 1x 36.5 - -
X-50-32x4d-FPN pytorch GN+WS 1x 39.9 - model
X-101-32x4d-FPN pytorch GN 1x 33.2 - -
X-101-32x4d-FPN pytorch GN+WS 1x 41.8 - model

Mask R-CNN

Backbone Style Normalization Lr schd box AP mask AP Download
R-50-FPN pytorch GN 2x 39.9 36.0 -
R-50-FPN pytorch GN+WS 2x 40.3 36.2 model
R-101-FPN pytorch GN 2x 41.6 37.3 -
R-101-FPN pytorch GN+WS 2x 42.0 37.3 model
X-50-32x4d-FPN pytorch GN 2x 39.2 35.5 -
X-50-32x4d-FPN pytorch GN+WS 2x 40.7 36.7 model
X-101-32x4d-FPN pytorch GN 2x 36.4 33.1 -
X-101-32x4d-FPN pytorch GN+WS 2x 42.1 37.7 model
R-50-FPN pytorch GN 20-23-24e 40.6 36.6 -
R-50-FPN pytorch GN+WS 20-23-24e 41.1 37.0 model
R-101-FPN pytorch GN 20-23-24e 42.3 38.1 -
R-101-FPN pytorch GN+WS 20-23-24e 43.0 38.4 model
X-50-32x4d-FPN pytorch GN 20-23-24e 39.6 35.9 -
X-50-32x4d-FPN pytorch GN+WS 20-23-24e 41.9 37.7 model
X-101-32x4d-FPN pytorch GN 20-23-24e 36.6 33.4 -
X-101-32x4d-FPN pytorch GN+WS 20-23-24e 43.4 38.7 model

Note:

  • GN+WS requires about 5% more memory than GN, and it is only 5% slower than GN.
  • In the paper, a 20-23-24e lr schedule is used instead of 2x.
  • The X-50-GN and X-101-GN pretrained models are also shared by the authors.