forked from mit-han-lab/llm-awq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentry.py
304 lines (268 loc) · 11.2 KB
/
entry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from lm_eval import evaluator, tasks
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import torch
import argparse
import os
import json
from accelerate import (
init_empty_weights,
infer_auto_device_map,
dispatch_model,
load_checkpoint_in_model,
)
from accelerate.utils.modeling import get_balanced_memory
from awq.utils.parallel import auto_parallel
from awq.quantize.pre_quant import run_awq, apply_awq
from awq.quantize.quantizer import (
pseudo_quantize_model_weight,
real_quantize_model_weight,
)
from awq.utils.lm_eval_adaptor import LMEvalAdaptor
from awq.utils.utils import simple_dispatch_model
from datasets import load_dataset
from torch import nn
import tqdm
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, help="path of the hf model")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--tasks", default=None, type=str)
parser.add_argument("--output_path", default=None, type=str)
parser.add_argument("--num_fewshot", type=int, default=0)
# model config
parser.add_argument("--parallel", action="store_true", help="enable model parallelism")
# max memory to offload larger models to CPU
parser.add_argument(
"--max_memory",
type=str,
nargs="*",
help="List of device_id:max_memory pairs to be parsed into a dictionary; "
+ "Example: 0:10GiB 1:10GiB cpu:30GiB; "
+ "mode details here: "
+ "https://huggingface.co/docs/accelerate/usage_guides/big_modeling",
)
parser.add_argument(
"--auto_parallel",
action="store_true",
help="automatically set parallel and batch_size",
)
# quantization config
parser.add_argument("--w_bit", type=int, default=None)
parser.add_argument("--q_group_size", type=int, default=-1)
parser.add_argument("--no_zero_point", action="store_true", help="disable zero_point")
parser.add_argument("--q_backend", type=str, default="fake", choices=["fake", "real"])
# save/load real quantized weights
parser.add_argument("--dump_quant", type=str, default=None, help="save quantized model")
parser.add_argument("--load_quant", type=str, default=None, help="load quantized model")
# apply/save/load awq
parser.add_argument("--run_awq", action="store_true", help="perform awq search process")
parser.add_argument(
"--dump_awq", type=str, default=None, help="save the awq search results"
)
parser.add_argument(
"--load_awq", type=str, default=None, help="load the awq search results"
)
args = parser.parse_args()
max_memory = [v.split(":") for v in (args.max_memory or [])]
max_memory = {(int(k) if k.isdigit() else k): v for k, v in max_memory}
if args.auto_parallel:
gpu_list = auto_parallel(args)
# get quantization config (apart from w_bit)
q_config = {
"zero_point": not args.no_zero_point, # by default True
"q_group_size": args.q_group_size, # whether to use group quantization
}
print("Quantization config:", q_config)
# build model and tokenizer
def build_model_and_enc(model_path):
if not os.path.exists(model_path): # look into ssd
raise FileNotFoundError(f"{model_path} not found!")
print(f"* Building model {model_path}")
# all hf model
if "llava" in model_path.lower() or "vila" in model_path.lower():
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path
enc, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path),
device="cpu",
**{"use_cache": False}
)
else:
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
if "mpt" in config.__class__.__name__.lower():
enc = AutoTokenizer.from_pretrained(
config.tokenizer_name, trust_remote_code=True
)
else:
enc = AutoTokenizer.from_pretrained(
model_path, use_fast=False, trust_remote_code=True
)
if args.load_quant: # directly load quantized weights
print("Loading pre-computed quantized weights...")
with init_empty_weights():
model = AutoModelForCausalLM.from_config(
config=config, torch_dtype=torch.float16, trust_remote_code=True
)
real_quantize_model_weight(
model, w_bit=args.w_bit, q_config=q_config, init_only=True
)
model.tie_weights()
# Infer device map
kwargs = {"max_memory": max_memory} if len(max_memory) else {}
device_map = infer_auto_device_map(
model,
no_split_module_classes=[
"OPTDecoderLayer",
"LlamaDecoderLayer",
"BloomBlock",
"MPTBlock",
"DecoderLayer",
"MistralDecoderLayer",
"MixtralDecoderLayer",
],
**kwargs,
)
# Load checkpoint in the model
load_checkpoint_in_model(
model,
checkpoint=args.load_quant,
device_map=device_map,
offload_state_dict=True,
)
# Dispatch model
model = simple_dispatch_model(model, device_map=device_map)
model.eval()
else: # fp16 to quantized
args.run_awq &= not args.load_awq # if load_awq, no need to run awq
# Init model on CPU:
kwargs = {"torch_dtype": torch.float16, "low_cpu_mem_usage": True}
if not ("llava" in model_path.lower() or "vila" in model_path.lower()):
model = AutoModelForCausalLM.from_pretrained(
model_path, config=config, trust_remote_code=True, **kwargs
)
model.eval()
if args.run_awq:
assert args.dump_awq, "Please save the awq results with --dump_awq"
awq_results = run_awq(
model,
enc,
w_bit=args.w_bit,
q_config=q_config,
n_samples=128,
seqlen=512,
)
if args.dump_awq:
dirpath = os.path.dirname(args.dump_awq)
os.makedirs(dirpath, exist_ok=True)
torch.save(awq_results, args.dump_awq)
print("AWQ results saved at", args.dump_awq)
exit(0)
if args.load_awq:
print("Loading pre-computed AWQ results from", args.load_awq)
awq_results = torch.load(args.load_awq, map_location="cpu")
apply_awq(model, awq_results)
# weight quantization
if args.w_bit is not None:
if args.q_backend == "fake":
assert (
args.dump_quant is None
), "Need to use real quantization to dump quantized weights"
pseudo_quantize_model_weight(model, w_bit=args.w_bit, q_config=q_config)
elif args.q_backend == "real": # real quantization
real_quantize_model_weight(model, w_bit=args.w_bit, q_config=q_config)
if args.dump_quant:
if not args.dump_quant.endswith("v2.pt"):
print("[Info] Auto-change the dump_quant file name to *v2.pt")
args.dump_quant = args.dump_quant.replace(".pt", "-v2.pt")
dirpath = os.path.dirname(args.dump_quant)
os.makedirs(dirpath, exist_ok=True)
print(f"Saving the quantized model at {args.dump_quant}...")
torch.save(model.cpu().state_dict(), args.dump_quant)
exit(0)
else:
raise NotImplementedError
# Move the model to GPU (as much as possible) for LM evaluation
kwargs = {
"max_memory": get_balanced_memory(
model, max_memory if len(max_memory) > 0 else None
)
}
device_map = infer_auto_device_map(
model,
# TODO: can we remove this?
no_split_module_classes=[
"OPTDecoderLayer",
"LlamaDecoderLayer",
"BloomBlock",
"MPTBlock",
"DecoderLayer",
"MistralDecoderLayer",
"MixtralDecoderLayer",
],
**kwargs,
)
model = dispatch_model(model, device_map=device_map)
return model, enc
def main():
if args.output_path is not None and os.path.exists(args.output_path):
# print(f"Results {args.output_path} already generated. Exit.")
print(f"Results {args.output_path} already generated. Overwrite.")
# exit()
if args.dump_awq and os.path.exists(args.dump_awq):
print(f"Found existing AWQ results {args.dump_awq}, exit.")
exit()
# a hack here to auto set model group
model, enc = build_model_and_enc(args.model_path)
if args.tasks is not None:
# https://github.com/IST-DASLab/gptq/blob/2d65066eeb06a5c9ff5184d8cebdf33662c67faf/llama.py#L206
if args.tasks == "wikitext":
testenc = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")
testenc = enc("\n\n".join(testenc["text"]), return_tensors="pt")
model.seqlen = 2048
testenc = testenc.input_ids.to(model.device)
nsamples = testenc.numel() // model.seqlen
model = model.eval()
nlls = []
for i in tqdm.tqdm(range(nsamples), desc="evaluating..."):
batch = testenc[:, (i * model.seqlen) : ((i + 1) * model.seqlen)].to(
model.device
)
with torch.no_grad():
lm_logits = model(batch).logits
shift_logits = lm_logits[:, :-1, :].contiguous().float()
shift_labels = testenc[
:, (i * model.seqlen) : ((i + 1) * model.seqlen)
][:, 1:]
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
neg_log_likelihood = loss.float() * model.seqlen
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen))
print(ppl.item())
results = {"ppl": ppl.item()}
if args.output_path is not None:
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
with open(args.output_path, "w") as f:
json.dump(results, f, indent=2)
else:
task_names = args.tasks.split(",")
lm_eval_model = LMEvalAdaptor(args.model_path, model, enc, args.batch_size)
results = evaluator.simple_evaluate(
model=lm_eval_model,
tasks=task_names,
batch_size=args.batch_size,
no_cache=True,
num_fewshot=args.num_fewshot,
)
print(evaluator.make_table(results))
if args.output_path is not None:
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
# otherwise cannot save
results["config"]["model"] = args.model_path
with open(args.output_path, "w") as f:
json.dump(results, f, indent=2)
if __name__ == "__main__":
main()