forked from SimiaoZuo/Transformer-Hawkes-Process
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.py
202 lines (137 loc) · 6.41 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import sys
from transformer.Models import get_non_pad_mask
def softplus(x, beta):
# hard thresholding at 20
temp = beta * x
temp[temp > 20] = 20
return 1.0 / beta * torch.log(1 + torch.exp(temp))
def compute_event(event, non_pad_mask):
""" Log-likelihood of events. """
# add 1e-9 in case some events have 0 likelihood
event += math.pow(10, -9)
event.masked_fill_(~non_pad_mask.bool(), 1.0)
result = torch.log(event)
return result
def compute_integral_biased(all_lambda, time, non_pad_mask):
""" Log-likelihood of non-events, using linear interpolation. """
diff_time = (time[:, 1:] - time[:, :-1]) * non_pad_mask[:, 1:]
diff_lambda = (all_lambda[:, 1:] + all_lambda[:, :-1]) * non_pad_mask[:, 1:]
biased_integral = diff_lambda * diff_time
result = 0.5 * biased_integral
return result
def compute_integral_unbiased(model, data, time, non_pad_mask, type_mask):
""" Log-likelihood of non-events, using Monte Carlo integration. """
num_samples = 100
diff_time = (time[:, 1:] - time[:, :-1]) * non_pad_mask[:, 1:]
temp_time = diff_time.unsqueeze(2) * \
torch.rand([*diff_time.size(), num_samples], device=data.device)
temp_time /= (time[:, :-1] + 1).unsqueeze(2)
temp_hid = model.linear_event(data)[:, 1:, :]
temp_hid = torch.sum(temp_hid * type_mask[:, 1:, :], dim=2, keepdim=True)
all_lambda = softplus(temp_hid + model.alpha * temp_time, model.beta)
all_lambda = torch.sum(all_lambda, dim=2) / num_samples
unbiased_integral = all_lambda * diff_time
return unbiased_integral
def get_theta_matrix(model, data_count, time):
data_count = data_count.unsqueeze(0)
# print("DATA COUNT")
# print(data_count.shape)
# print("TIME")
idx_row = (torch.ceil(time / model.bin_size) - 1.0).to(device=data_count.device, dtype=torch.long).squeeze()
theta_matrix = data_count[:, idx_row, :]
return theta_matrix
def log_likelihood_sparse(model, data, data_count, time, types):
non_pad_mask = get_non_pad_mask(types).squeeze(2)
type_mask = torch.zeros([*types.size(), model.num_types], device=data.device)
for i in range(model.num_types):
type_mask[:, :, i] = (types == i + 1).bool().to(data.device)
theta_matrix = get_theta_matrix(model, data_count, time)
all_hid = model.linear_event(data) # + model.linear_count(theta_matrix)
all_lambda = softplus(all_hid, model.beta)
type_lambda = torch.sum(all_lambda * type_mask, dim=2)
# event log-likelihood
event_ll = compute_event(type_lambda, non_pad_mask)
event_ll = torch.sum(event_ll, dim=-1)
# non-event log-likelihood, either numerical integration or MC integration
# non_event_ll = compute_integral_biased(type_lambda, time, non_pad_mask)
non_event_ll = compute_integral_unbiased(model, data, time, non_pad_mask, type_mask)
non_event_ll = torch.sum(non_event_ll, dim=-1)
return event_ll, non_event_ll
def log_likelihood(model, data, time, types):
""" Log-likelihood of sequence. """
non_pad_mask = get_non_pad_mask(types).squeeze(2)
type_mask = torch.zeros([*types.size(), model.num_types], device=data.device)
for i in range(model.num_types):
type_mask[:, :, i] = (types == i + 1).bool().to(data.device)
all_hid = model.linear(data) # data -> hidden representation
all_lambda = softplus(all_hid, model.beta)
type_lambda = torch.sum(all_lambda * type_mask, dim=2)
# event log-likelihood
event_ll = compute_event(type_lambda, non_pad_mask)
event_ll = torch.sum(event_ll, dim=-1)
# non-event log-likelihood, either numerical integration or MC integration
# non_event_ll = compute_integral_biased(type_lambda, time, non_pad_mask)
non_event_ll = compute_integral_unbiased(model, data, time, non_pad_mask, type_mask)
non_event_ll = torch.sum(non_event_ll, dim=-1)
return event_ll, non_event_ll
def type_loss(prediction, types, loss_func):
""" Event prediction loss, cross entropy or label smoothing. """
# convert [1,2,3] based types to [0,1,2]; also convert padding events to -1
truth = types[:, 1:] - 1
prediction = prediction[:, :-1, :]
pred_type = torch.max(prediction, dim=-1)[1]
correct_num = torch.sum(pred_type == truth)
# compute cross entropy loss
if isinstance(loss_func, LabelSmoothingLoss):
loss = loss_func(prediction, truth)
else:
loss = loss_func(prediction.transpose(1, 2), truth)
loss = torch.sum(loss)
return loss, correct_num
def time_loss(prediction, event_time):
""" Time prediction loss. """
prediction.squeeze_(-1)
true = event_time[:, 1:] - event_time[:, :-1]
prediction = prediction[:, :-1]
# event time gap prediction
diff = prediction - true
se = torch.sum(diff * diff)
return se
class LabelSmoothingLoss(nn.Module):
"""
With label smoothing,
KL-divergence between q_{smoothed ground truth prob.}(w)
and p_{prob. computed by model}(w) is minimized.
"""
def __init__(self, label_smoothing, tgt_vocab_size, ignore_index=-100):
assert 0.0 < label_smoothing <= 1.0
super(LabelSmoothingLoss, self).__init__()
self.eps = label_smoothing
self.num_classes = tgt_vocab_size
self.ignore_index = ignore_index
def forward(self, output, target):
"""
output (FloatTensor): (batch_size) x n_classes
target (LongTensor): batch_size
"""
non_pad_mask = target.ne(self.ignore_index).float()
target[target.eq(self.ignore_index)] = 0
one_hot = F.one_hot(target, num_classes=self.num_classes).float()
one_hot = one_hot * (1 - self.eps) + (1 - one_hot) * self.eps / self.num_classes
log_prb = F.log_softmax(output, dim=-1)
loss = -(one_hot * log_prb).sum(dim=-1)
loss = loss * non_pad_mask
return loss
def get_window_sizes(tensor_data, lambda_window):
sorted_data, _ = torch.sort(tensor_data)
lower_bound = (sorted_data.unsqueeze(0) >= (tensor_data.unsqueeze(1) - lambda_window)).type(torch.int64)
idx = torch.argmax(lower_bound, dim=1)
# Compute the position indices for each element
position = torch.searchsorted(sorted_data, tensor_data, right=True) - 1
# Compute window sizes
window_sizes = position - idx + 1
return window_sizes