forked from lanpa/tensorboardX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_graph.py
38 lines (33 loc) · 1.12 KB
/
demo_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
import torch.nn as nn
import torchvision.utils as vutils
import numpy as np
import torch.nn.functional as F
import torchvision.models as models
from tensorboardX import SummaryWriter
class Mnist(nn.Module):
def __init__(self):
super(Mnist, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.bn = nn.BatchNorm2d(20)
def forward(self, x):
x = F.max_pool2d(self.conv1(x), 2)
x = F.relu(x)+F.relu(-x)
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = self.bn(x)
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
x = F.log_softmax(x)
return x
model = Mnist()
# if you want to show the input tensor, set requires_grad=True
res = model(torch.autograd.Variable(torch.Tensor(1,1,28,28), requires_grad=True))
writer = SummaryWriter()
writer.add_graph(model, res)
writer.close()