forked from kizniche/Mycodo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
498 lines (439 loc) · 21.2 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# coding=utf-8
import csv
import datetime
import io
import logging
import os
import shutil
import time
import zipfile
from collections import OrderedDict
from dateutil import relativedelta
from mycodo.config import INFLUXDB_DATABASE
from mycodo.config import INSTALL_DIRECTORY
from mycodo.config import PATH_FUNCTIONS_CUSTOM
from mycodo.config import PATH_INPUTS_CUSTOM
from mycodo.config import PATH_OUTPUTS_CUSTOM
from mycodo.config import PATH_USER_SCRIPTS
from mycodo.config import PATH_WIDGETS_CUSTOM
from mycodo.config import SQL_DATABASE_MYCODO
from mycodo.config import USAGE_REPORTS_PATH
from mycodo.databases.models import Conversion
from mycodo.databases.models import DeviceMeasurements
from mycodo.databases.models import EnergyUsage
from mycodo.databases.models import Misc
from mycodo.databases.models import Output
from mycodo.utils.database import db_retrieve_table_daemon
from mycodo.utils.influx import average_past_seconds
from mycodo.utils.influx import average_start_end_seconds
from mycodo.utils.influx import output_sec_on
from mycodo.utils.logging_utils import set_log_level
from mycodo.utils.system_pi import assure_path_exists
from mycodo.utils.system_pi import cmd_output
from mycodo.utils.system_pi import return_measurement_info
from mycodo.utils.system_pi import set_user_grp
logger = logging.getLogger("mycodo.tools")
logger.setLevel(set_log_level(logging))
def create_measurements_export(save_path=None):
try:
data = io.BytesIO()
influx_backup_dir = os.path.join(INSTALL_DIRECTORY, 'influx_backup')
# Delete influxdb directory if it exists
if os.path.isdir(influx_backup_dir):
shutil.rmtree(influx_backup_dir)
# Create new directory (make sure it's empty)
assure_path_exists(influx_backup_dir)
cmd = "/usr/bin/influxd backup -database {db} -portable {path}".format(
db=INFLUXDB_DATABASE, path=influx_backup_dir)
_, _, status = cmd_output(cmd)
if not status:
# Zip all files in the influx_backup directory
with zipfile.ZipFile(data, mode='w') as z:
for _, _, files in os.walk(influx_backup_dir):
for filename in files:
z.write(os.path.join(influx_backup_dir, filename),
filename)
data.seek(0)
# Delete influxdb directory if it exists
if os.path.isdir(influx_backup_dir):
shutil.rmtree(influx_backup_dir)
if save_path:
with open(save_path, "wb") as f:
f.write(data.getbuffer())
set_user_grp(save_path, 'mycodo', 'mycodo')
return 0, save_path
else:
return 0, data
except Exception as err:
logger.error("Error: {}".format(err))
return 1, err
def create_settings_export(save_path=None):
try:
data = io.BytesIO()
with zipfile.ZipFile(data, mode='w') as z:
z.write(SQL_DATABASE_MYCODO,
os.path.basename(SQL_DATABASE_MYCODO))
export_directories = [
(PATH_FUNCTIONS_CUSTOM, "custom_functions"),
(PATH_INPUTS_CUSTOM, "custom_inputs"),
(PATH_OUTPUTS_CUSTOM, "custom_outputs"),
(PATH_WIDGETS_CUSTOM, "custom_widgets"),
(PATH_USER_SCRIPTS, "user_scripts")
]
for each_backup in export_directories:
if not os.path.exists(each_backup[0]):
continue
for folder_name, sub_folders, filenames in os.walk(each_backup[0]):
for filename in filenames:
if filename == "__init__.py" or filename.endswith("pyc"):
continue
file_path = os.path.join(folder_name, filename)
z.write(file_path, "{}/{}".format(each_backup[1], os.path.basename(file_path)))
data.seek(0)
if save_path:
with open(save_path, "wb") as f:
f.write(data.getbuffer())
set_user_grp(save_path, 'mycodo', 'mycodo')
return 0, save_path
else:
return 0, data
except Exception as err:
logger.error("Error: {}".format(err))
return 1, err
def next_schedule(time_span='daily', set_day=None, set_hour=None):
"""
Return the next local epoch to schedule a task
Returns the epoch of the next day or nth day of the week or month
:param time_span: str, 'daily', 'weekly', or 'monthly'
:param set_hour: int, hour of the day
:param set_day: int, day of the week (0 = Monday) or month (1-28)
:return: float, local epoch of next schedule
"""
now = time.time()
time_now = datetime.datetime.now()
current_day = time_now.day
current_month = time_now.month
current_year = time_now.year
if time_span == 'monthly':
new_month = current_month
new_year = current_year
future_time_test = time.mktime(datetime.datetime(
year=current_year,
month=current_month,
day=set_day,
hour=set_hour).timetuple())
if future_time_test < now:
if current_month == 12:
new_month = 1
new_year += 1
else:
new_month += 1
future_time_test = time.mktime(datetime.datetime(
year=new_year,
month=new_month,
day=set_day,
hour=set_hour).timetuple())
return future_time_test
elif time_span == 'weekly':
today_weekday = datetime.datetime.today().weekday()
if today_weekday < (set_day - 1):
days_to_add = (set_day - 1) - today_weekday
else:
days_to_add = 7 - (today_weekday - (set_day - 1))
future_time_test = time.mktime(
(datetime.date.today() +
relativedelta.relativedelta(days=days_to_add)).timetuple()) + (3600 * set_hour)
return future_time_test
elif time_span == 'daily':
future_time_test = time.mktime(datetime.datetime(
year=current_year,
month=current_month,
day=current_day,
hour=set_hour).timetuple())
if future_time_test < now:
future_time_test = time.mktime(
(datetime.date.today() +
relativedelta.relativedelta(days=1)).timetuple()) + (3600 * set_hour)
return future_time_test
def return_energy_usage(energy_usage, device_measurements_all, conversion_all):
""" Calculate energy usage from Inputs/Maths measuring amps """
energy_usage_stats = {}
graph_info = {}
for each_energy in energy_usage:
graph_info[each_energy.unique_id] = {}
energy_usage_stats[each_energy.unique_id] = {}
energy_usage_stats[each_energy.unique_id]['hour'] = 0
energy_usage_stats[each_energy.unique_id]['day'] = 0
energy_usage_stats[each_energy.unique_id]['week'] = 0
energy_usage_stats[each_energy.unique_id]['month'] = 0
device_measurement = device_measurements_all.filter(
DeviceMeasurements.unique_id == each_energy.measurement_id).first()
if device_measurement:
conversion = conversion_all.filter(
Conversion.unique_id == device_measurement.conversion_id).first()
else:
conversion = None
channel, unit, measurement = return_measurement_info(
device_measurement, conversion)
graph_info[each_energy.unique_id]['main'] = {}
graph_info[each_energy.unique_id]['main']['device_id'] = each_energy.device_id
graph_info[each_energy.unique_id]['main']['measurement_id'] = each_energy.measurement_id
graph_info[each_energy.unique_id]['main']['channel'] = channel
graph_info[each_energy.unique_id]['main']['unit'] = unit
graph_info[each_energy.unique_id]['main']['measurement'] = measurement
graph_info[each_energy.unique_id]['main']['start_time_epoch'] = (
datetime.datetime.now() -
datetime.timedelta(seconds=2629800)).strftime('%s')
if unit == 'A': # If unit is amps, proceed
hour = average_past_seconds(
each_energy.device_id, unit, channel, 3600,
measure=measurement)
if hour:
energy_usage_stats[each_energy.unique_id]['hour'] = hour
day = average_past_seconds(
each_energy.device_id, unit, channel, 86400,
measure=measurement)
if day:
energy_usage_stats[each_energy.unique_id]['day'] = day
week = average_past_seconds(
each_energy.device_id, unit, channel, 604800,
measure=measurement)
if week:
energy_usage_stats[each_energy.unique_id]['week'] = week
month = average_past_seconds(
each_energy.device_id, unit, channel, 2629800,
measure=measurement)
if month:
energy_usage_stats[each_energy.unique_id]['month'] = month
return energy_usage_stats, graph_info
def calc_energy_usage(
energy_usage_id,
graph_info,
start_string,
end_string,
energy_usage,
device_measurements,
conversion,
volts):
calculate_usage = {}
picker_start = {}
picker_end = {}
start_seconds = int(time.mktime(
time.strptime(start_string, '%m/%d/%Y %H:%M')))
end_seconds = int(time.mktime(
time.strptime(end_string, '%m/%d/%Y %H:%M')))
utc_offset_timedelta = datetime.datetime.utcnow() - datetime.datetime.now()
start = datetime.datetime.fromtimestamp(float(start_seconds))
start += utc_offset_timedelta
start_str = start.strftime('%Y-%m-%dT%H:%M:%S.%fZ')
end = datetime.datetime.fromtimestamp(float(end_seconds))
end += utc_offset_timedelta
end_str = end.strftime('%Y-%m-%dT%H:%M:%S.%fZ')
energy_device = energy_usage.filter(
EnergyUsage.unique_id == energy_usage_id).first()
device_measurement = device_measurements.filter(
DeviceMeasurements.unique_id == energy_device.measurement_id).first()
if device_measurement:
conversion = conversion.filter(
Conversion.unique_id == device_measurement.conversion_id).first()
else:
conversion = None
channel, unit, measurement = return_measurement_info(
device_measurement, conversion)
picker_start[energy_device.unique_id] = start_string
picker_end[energy_device.unique_id] = end_string
if energy_device.unique_id not in graph_info:
graph_info[energy_device.unique_id] = {}
graph_info[energy_device.unique_id]['calculate'] = {}
graph_info[energy_device.unique_id]['calculate']['device_id'] = energy_device.device_id
graph_info[energy_device.unique_id]['calculate']['measurement_id'] = energy_device.measurement_id
graph_info[energy_device.unique_id]['calculate']['channel'] = channel
graph_info[energy_device.unique_id]['calculate']['unit'] = unit
graph_info[energy_device.unique_id]['calculate']['measurement'] = measurement
graph_info[energy_device.unique_id]['calculate']['start_time_epoch'] = start_seconds
graph_info[energy_device.unique_id]['calculate']['end_time_epoch'] = end_seconds
calculate_usage[energy_device.unique_id] = {}
calculate_usage[energy_device.unique_id]['average_amps'] = 0
calculate_usage[energy_device.unique_id]['kwh'] = 0
average_amps = average_start_end_seconds(
energy_device.device_id,
unit,
channel,
start_str,
end_str,
measure=measurement)
calculate_usage[energy_device.unique_id]['average_amps'] = 0
calculate_usage[energy_device.unique_id]['kwh'] = 0
calculate_usage[energy_device.unique_id]['hours'] = 0
if average_amps:
calculate_usage[energy_device.unique_id]['average_amps'] = average_amps
hours = ((end_seconds - start_seconds) / 3600)
if hours < 1:
hours = 1
calculate_usage[energy_device.unique_id]['kwh'] = volts * average_amps / 1000 * hours
calculate_usage[energy_device.unique_id]['hours'] = hours
return calculate_usage, graph_info, picker_start, picker_end
def return_output_usage(
dict_outputs,
table_misc,
outputs,
table_output_channels,
custom_options_values_output_channels):
""" Return output usage and cost """
date_now = datetime.date.today()
time_now = datetime.datetime.now()
past_month_seconds = 0
if table_misc.output_usage_dayofmonth == datetime.datetime.today().day:
past_month_seconds = (time_now - time_now.replace(
hour=0, minute=0, second=0, microsecond=0)).total_seconds()
elif table_misc.output_usage_dayofmonth > datetime.datetime.today().day:
first_day = date_now.replace(day=1)
last_month = first_day - datetime.timedelta(days=1)
past_month = last_month.replace(day=table_misc.output_usage_dayofmonth)
past_month_seconds = (date_now - past_month).total_seconds()
elif table_misc.output_usage_dayofmonth < datetime.datetime.today().day:
past_month = date_now.replace(day=table_misc.output_usage_dayofmonth)
past_month_seconds = (date_now - past_month).total_seconds()
output_stats = OrderedDict()
# Calculate output on duration for different time periods
# Use OrderedDict to ensure proper order when saved to csv file
output_stats['total_duration'] = dict.fromkeys(['1d', '1w', '1m', '1m_date', '1y'], 0)
output_stats['total_kwh'] = dict.fromkeys(['1d', '1w', '1m', '1m_date', '1y'], 0)
output_stats['total_cost'] = dict.fromkeys(['1d', '1w', '1m', '1m_date', '1y'], 0)
for each_output in outputs:
output_channels = table_output_channels.query.filter(table_output_channels.output_id == each_output.unique_id).all()
for each_channel in output_channels:
channel_options = custom_options_values_output_channels[each_output.unique_id][each_channel.channel]
if ('types' in dict_outputs[each_output.output_type]['channels_dict'][each_channel.channel] and
'on_off' in dict_outputs[each_output.output_type]['channels_dict'][each_channel.channel]['types'] and
'amps' in channel_options):
past_1d_hours = output_sec_on(
each_output.unique_id, 86400, output_channel=each_channel.channel) / 3600
past_1w_hours = output_sec_on(
each_output.unique_id, 604800, output_channel=each_channel.channel) / 3600
past_1m_hours = output_sec_on(
each_output.unique_id, 2629743, output_channel=each_channel.channel) / 3600
past_1m_date_hours = output_sec_on(
each_output.unique_id, int(past_month_seconds), output_channel=each_channel.channel) / 3600
past_1y_hours = output_sec_on(
each_output.unique_id, 31556926, output_channel=each_channel.channel) / 3600
past_1d_kwh = table_misc.output_usage_volts * channel_options['amps'] * past_1d_hours / 1000
past_1w_kwh = table_misc.output_usage_volts * channel_options['amps'] * past_1w_hours / 1000
past_1m_kwh = table_misc.output_usage_volts * channel_options['amps'] * past_1m_hours / 1000
past_1m_date_kwh = table_misc.output_usage_volts * channel_options['amps'] * past_1m_date_hours / 1000
past_1y_kwh = table_misc.output_usage_volts * channel_options['amps'] * past_1y_hours / 1000
if each_output.unique_id not in output_stats:
output_stats[each_output.unique_id] = {}
output_stats[each_output.unique_id][each_channel.unique_id] = {
'1d': {
'hours_on': past_1d_hours,
'kwh': past_1d_kwh,
'cost': table_misc.output_usage_cost * past_1d_kwh
},
'1w': {
'hours_on': past_1w_hours,
'kwh': past_1w_kwh,
'cost': table_misc.output_usage_cost * past_1w_kwh
},
'1m': {
'hours_on': past_1m_hours,
'kwh': past_1m_kwh,
'cost': table_misc.output_usage_cost * past_1m_kwh
},
'1m_date': {
'hours_on': past_1m_date_hours,
'kwh': past_1m_date_kwh,
'cost': table_misc.output_usage_cost * past_1m_date_kwh
},
'1y': {
'hours_on': past_1y_hours,
'kwh': past_1y_kwh,
'cost': table_misc.output_usage_cost * past_1y_kwh
}
}
output_stats['total_duration']['1d'] += past_1d_hours
output_stats['total_duration']['1w'] += past_1w_hours
output_stats['total_duration']['1m'] += past_1m_hours
output_stats['total_duration']['1m_date'] += past_1m_date_hours
output_stats['total_duration']['1y'] += past_1y_hours
output_stats['total_kwh']['1d'] += past_1d_kwh
output_stats['total_kwh']['1w'] += past_1w_kwh
output_stats['total_kwh']['1m'] += past_1m_kwh
output_stats['total_kwh']['1m_date'] += past_1m_date_kwh
output_stats['total_kwh']['1y'] += past_1y_kwh
output_stats['total_cost']['1d'] += table_misc.output_usage_cost * past_1d_kwh
output_stats['total_cost']['1w'] += table_misc.output_usage_cost * past_1w_kwh
output_stats['total_cost']['1m'] += table_misc.output_usage_cost * past_1m_kwh
output_stats['total_cost']['1m_date'] += table_misc.output_usage_cost * past_1m_date_kwh
output_stats['total_cost']['1y'] += table_misc.output_usage_cost * past_1y_kwh
return output_stats
def generate_output_usage_report():
"""
Generate output usage report in a csv file
"""
logger.debug("Generating output usage report...")
try:
assure_path_exists(USAGE_REPORTS_PATH)
misc = db_retrieve_table_daemon(Misc, entry='first')
output = db_retrieve_table_daemon(Output)
output_usage = return_output_usage(misc, output.all())
timestamp = time.strftime("%Y-%m-%d_%H-%M")
file_name = 'output_usage_report_{ts}.csv'.format(ts=timestamp)
report_path_file = os.path.join(USAGE_REPORTS_PATH, file_name)
with open(report_path_file, 'wb') as f:
w = csv.writer(f)
# Header row
w.writerow([
'Relay ID',
'Relay Unique ID',
'Relay Name',
'Type',
'Past Day',
'Past Week',
'Past Month',
'Past Month (from {})'.format(misc.output_usage_dayofmonth),
'Past Year'
])
for key, value in output_usage.items():
if key in ['total_duration', 'total_cost', 'total_kwh']:
# Totals rows
w.writerow(['', '', '',
key,
value['1d'],
value['1w'],
value['1m'],
value['1m_date'],
value['1y']])
else:
# Each output rows
each_output = output.filter(Output.unique_id == key).first()
w.writerow([each_output.unique_id,
each_output.unique_id,
str(each_output.name).encode("utf-8"),
'hours_on',
value['1d']['hours_on'],
value['1w']['hours_on'],
value['1m']['hours_on'],
value['1m_date']['hours_on'],
value['1y']['hours_on']])
w.writerow([each_output.unique_id,
each_output.unique_id,
str(each_output.name).encode("utf-8"),
'kwh',
value['1d']['kwh'],
value['1w']['kwh'],
value['1m']['kwh'],
value['1m_date']['kwh'],
value['1y']['kwh']])
w.writerow([each_output.unique_id,
each_output.unique_id,
str(each_output.name).encode("utf-8"),
'cost',
value['1d']['cost'],
value['1w']['cost'],
value['1m']['cost'],
value['1m_date']['cost'],
value['1y']['cost']])
set_user_grp(report_path_file, 'mycodo', 'mycodo')
except Exception:
logger.exception("Energy Usage Report Generation ERROR")