forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ema.py
104 lines (84 loc) · 3.41 KB
/
ema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
class EMA(object):
"""
The implementation of Exponential Moving Average for the trainable parameters.
Args:
model (nn.Layer): The model for applying EMA.
decay (float, optional): Decay is used to calculate ema_variable by
`ema_variable = decay * ema_variable + (1 - decay) * new_variable`.
Default: 0.99.
Returns:
None
Examples:
.. code-block:: python
# 1. Define model and dataset
# 2. Create EMA
ema = EMA(model, decay=0.99)
# 3. Train stage
for data in dataloader():
...
optimizer.step()
ema.step()
# 4. Evaluate stage
ema.apply() # Use the EMA data to replace the origin data
for data in dataloader():
...
ema.restore() # Restore the origin data to the model
"""
def __init__(self, model, decay=0.99):
super().__init__()
assert isinstance(model, paddle.nn.Layer), \
"The model should be the instance of paddle.nn.Layer."
assert decay >= 0 and decay <= 1.0, \
"The decay = {} should in [0.0, 1.0]".format(decay)
self._model = model
self._decay = decay
self._ema_data = {}
self._backup_data = {}
for name, param in self._model.named_parameters():
if not param.stop_gradient:
self._ema_data[name] = param.numpy()
def step(self):
"""
Calculate the EMA data for all trainable parameters.
"""
for name, param in self._model.named_parameters():
if not param.stop_gradient:
assert name in self._ema_data, \
"The param ({}) isn't in the model".format(name)
self._ema_data[name] = self._decay * self._ema_data[name] \
+ (1.0 - self._decay) * param.numpy()
def apply(self):
"""
Save the origin data and use the EMA data to replace the origin data.
"""
for name, param in self._model.named_parameters():
if not param.stop_gradient:
assert name in self._ema_data, \
"The param ({}) isn't in the model".format(name)
self._backup_data[name] = param.numpy()
param.set_value(self._ema_data[name])
def restore(self):
"""
Restore the origin data to the model.
"""
for name, param in self._model.named_parameters():
if not param.stop_gradient:
assert name in self._backup_data, \
"The param ({}) isn't in the model".format(name)
param.set_value(self._backup_data[name])
self._backup_data = {}