forked from VICO-UoE/DatasetCondensation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
669 lines (563 loc) · 28.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
import json
import time
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset
from torchvision import datasets, transforms
from scipy.ndimage.interpolation import rotate as scipyrotate
from networks import MLP, ConvNet, LeNet, AlexNet, AlexNetBN, VGG11, VGG11BN, ResNet18, ResNet18BN_AP, ResNet18BN
def get_dataset(dataset, data_path):
if dataset == 'MNIST':
channel = 1
im_size = (28, 28)
num_classes = 10
mean = [0.1307]
std = [0.3081]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.MNIST(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.MNIST(data_path, train=False, download=True, transform=transform)
class_names = [str(c) for c in range(num_classes)]
elif dataset == 'FashionMNIST':
channel = 1
im_size = (28, 28)
num_classes = 10
mean = [0.2861]
std = [0.3530]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.FashionMNIST(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.FashionMNIST(data_path, train=False, download=True, transform=transform)
class_names = dst_train.classes
elif dataset == 'SVHN':
channel = 3
im_size = (32, 32)
num_classes = 10
mean = [0.4377, 0.4438, 0.4728]
std = [0.1980, 0.2010, 0.1970]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.SVHN(data_path, split='train', download=True, transform=transform) # no augmentation
dst_test = datasets.SVHN(data_path, split='test', download=True, transform=transform)
class_names = [str(c) for c in range(num_classes)]
elif dataset == 'CIFAR10':
channel = 3
im_size = (32, 32)
num_classes = 10
mean = [0.4914, 0.4822, 0.4465]
std = [0.2023, 0.1994, 0.2010]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.CIFAR10(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.CIFAR10(data_path, train=False, download=True, transform=transform)
class_names = dst_train.classes
elif dataset == 'CIFAR100':
channel = 3
im_size = (32, 32)
num_classes = 100
mean = [0.5071, 0.4866, 0.4409]
std = [0.2673, 0.2564, 0.2762]
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)])
dst_train = datasets.CIFAR100(data_path, train=True, download=True, transform=transform) # no augmentation
dst_test = datasets.CIFAR100(data_path, train=False, download=True, transform=transform)
class_names = dst_train.classes
elif dataset == 'TinyImageNet':
channel = 3
im_size = (64, 64)
num_classes = 200
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
data = torch.load(os.path.join(data_path, 'tinyimagenet.pt'), map_location='cpu')
class_names = data['classes']
images_train = data['images_train']
labels_train = data['labels_train']
images_train = images_train.detach().float() / 255.0
labels_train = labels_train.detach()
for c in range(channel):
images_train[:, c] = (images_train[:, c] - mean[c]) / std[c]
dst_train = TensorDataset(images_train, labels_train) # no augmentation
images_val = data['images_val']
labels_val = data['labels_val']
images_val = images_val.detach().float() / 255.0
labels_val = labels_val.detach()
for c in range(channel):
images_val[:, c] = (images_val[:, c] - mean[c]) / std[c]
dst_test = TensorDataset(images_val, labels_val) # no augmentation
else:
exit('unknown dataset: %s' % dataset)
testloader = torch.utils.data.DataLoader(dst_test, batch_size=256, shuffle=False, num_workers=0)
return channel, im_size, num_classes, class_names, mean, std, dst_train, dst_test, testloader
class TensorDataset(Dataset):
def __init__(self, images, labels): # images: n x c x h x w tensor
self.images = images.detach().float()
self.labels = labels.detach()
def __getitem__(self, index):
return self.images[index], self.labels[index]
def __len__(self):
return self.images.shape[0]
def get_default_convnet_setting():
net_width, net_depth, net_act, net_norm, net_pooling = 128, 3, 'relu', 'instancenorm', 'avgpooling'
return net_width, net_depth, net_act, net_norm, net_pooling
def get_network(model, channel, num_classes, im_size=(32, 32), latents_size=None):
torch.random.manual_seed(int(time.time() * 1000) % 100000)
net_width, net_depth, net_act, net_norm, net_pooling = get_default_convnet_setting()
if model == 'MLP':
input_shape = im_size[0] * im_size[1] * channel
if latents_size is not None:
input_shape = latents_size
net = MLP(channel=channel, num_classes=num_classes, input_shape=input_shape)
elif model == 'ConvNet':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act=net_act, net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'LeNet':
net = LeNet(channel=channel, num_classes=num_classes)
elif model == 'AlexNet':
net = AlexNet(channel=channel, num_classes=num_classes)
elif model == 'AlexNetBN':
net = AlexNetBN(channel=channel, num_classes=num_classes)
elif model == 'VGG11':
net = VGG11(channel=channel, num_classes=num_classes)
elif model == 'VGG11BN':
net = VGG11BN(channel=channel, num_classes=num_classes)
elif model == 'ResNet18':
net = ResNet18(channel=channel, num_classes=num_classes)
elif model == 'ResNet18BN_AP':
net = ResNet18BN_AP(channel=channel, num_classes=num_classes)
elif model == 'ResNet18BN':
net = ResNet18BN(channel=channel, num_classes=num_classes)
elif model == 'ConvNetD1':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=1, net_act=net_act,
net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetD2':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=2, net_act=net_act,
net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetD3':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=3, net_act=net_act,
net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetD4':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=4, net_act=net_act,
net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetW32':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=32, net_depth=net_depth, net_act=net_act,
net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetW64':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=64, net_depth=net_depth, net_act=net_act,
net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetW128':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=128, net_depth=net_depth, net_act=net_act,
net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetW256':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=256, net_depth=net_depth, net_act=net_act,
net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetAS':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act='sigmoid', net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetAR':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act='relu', net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetAL':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act='leakyrelu', net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetASwish':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act='swish', net_norm=net_norm, net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetASwishBN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act='swish', net_norm='batchnorm', net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetNN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act=net_act, net_norm='none', net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetBN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act=net_act, net_norm='batchnorm', net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetLN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act=net_act, net_norm='layernorm', net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetIN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act=net_act, net_norm='instancenorm', net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetGN':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act=net_act, net_norm='groupnorm', net_pooling=net_pooling, im_size=im_size)
elif model == 'ConvNetNP':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act=net_act, net_norm=net_norm, net_pooling='none', im_size=im_size)
elif model == 'ConvNetMP':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act=net_act, net_norm=net_norm, net_pooling='maxpooling', im_size=im_size)
elif model == 'ConvNetAP':
net = ConvNet(channel=channel, num_classes=num_classes, net_width=net_width, net_depth=net_depth,
net_act=net_act, net_norm=net_norm, net_pooling='avgpooling', im_size=im_size)
else:
net = None
exit('unknown model: %s' % model)
gpu_num = torch.cuda.device_count()
if gpu_num > 0:
device = 'cuda'
if gpu_num > 1:
net = nn.DataParallel(net)
else:
device = 'cpu'
net = net.to(device)
return net
def get_time():
return str(time.strftime("[%Y-%m-%d %H:%M:%S]", time.localtime()))
def distance_wb(gwr, gws):
shape = gwr.shape
if len(shape) == 4: # conv, out*in*h*w
gwr = gwr.reshape(shape[0], shape[1] * shape[2] * shape[3])
gws = gws.reshape(shape[0], shape[1] * shape[2] * shape[3])
elif len(shape) == 3: # layernorm, C*h*w
gwr = gwr.reshape(shape[0], shape[1] * shape[2])
gws = gws.reshape(shape[0], shape[1] * shape[2])
elif len(shape) == 2: # linear, out*in
tmp = 'do nothing'
elif len(shape) == 1: # batchnorm/instancenorm, C; groupnorm x, bias
gwr = gwr.reshape(1, shape[0])
gws = gws.reshape(1, shape[0])
return torch.tensor(0, dtype=torch.float, device=gwr.device)
dis_weight = torch.sum(
1 - torch.sum(gwr * gws, dim=-1) / (torch.norm(gwr, dim=-1) * torch.norm(gws, dim=-1) + 0.000001))
dis = dis_weight
return dis
def match_loss(gw_syn, gw_real, args):
dis = torch.tensor(0.0).to(args.device)
if args.dis_metric == 'ours':
for ig in range(len(gw_real)):
gwr = gw_real[ig]
gws = gw_syn[ig]
dis += distance_wb(gwr, gws)
elif args.dis_metric == 'mse':
gw_real_vec = []
gw_syn_vec = []
for ig in range(len(gw_real)):
gw_real_vec.append(gw_real[ig].reshape((-1)))
gw_syn_vec.append(gw_syn[ig].reshape((-1)))
gw_real_vec = torch.cat(gw_real_vec, dim=0)
gw_syn_vec = torch.cat(gw_syn_vec, dim=0)
dis = torch.sum((gw_syn_vec - gw_real_vec) ** 2)
elif args.dis_metric == 'cos':
gw_real_vec = []
gw_syn_vec = []
for ig in range(len(gw_real)):
gw_real_vec.append(gw_real[ig].reshape((-1)))
gw_syn_vec.append(gw_syn[ig].reshape((-1)))
gw_real_vec = torch.cat(gw_real_vec, dim=0)
gw_syn_vec = torch.cat(gw_syn_vec, dim=0)
dis = 1 - torch.sum(gw_real_vec * gw_syn_vec, dim=-1) / (
torch.norm(gw_real_vec, dim=-1) * torch.norm(gw_syn_vec, dim=-1) + 0.000001)
else:
exit('unknown distance function: %s' % args.dis_metric)
return dis
def get_loops(ipc):
# Get the two hyper-parameters of outer-loop and inner-loop.
# The following values are empirically good.
if ipc == 1:
outer_loop, inner_loop = 1, 1
elif ipc == 10:
outer_loop, inner_loop = 10, 50
elif ipc == 20:
outer_loop, inner_loop = 20, 25
elif ipc == 30:
outer_loop, inner_loop = 30, 20
elif ipc == 40:
outer_loop, inner_loop = 40, 15
elif ipc == 50:
outer_loop, inner_loop = 50, 10
else:
outer_loop, inner_loop = 0, 0
exit('loop hyper-parameters are not defined for %d ipc' % ipc)
return outer_loop, inner_loop
def epoch(mode, dataloader, net, optimizer, criterion, args, aug):
loss_avg, acc_avg, num_exp = 0, 0, 0
net = net.to(args.device)
criterion = criterion.to(args.device)
if mode == 'train':
net.train()
else:
net.eval()
for i_batch, datum in enumerate(dataloader):
img = datum[0].float().to(args.device)
if aug:
if args.dsa:
img = DiffAugment(img, args.dsa_strategy, param=args.dsa_param)
else:
img = augment(img, args.dc_aug_param, device=args.device)
lab = datum[1].long().to(args.device)
n_b = lab.shape[0]
output = net(img)
loss = criterion(output, lab)
acc = np.sum(np.equal(np.argmax(output.cpu().data.numpy(), axis=-1), lab.cpu().data.numpy()))
loss_avg += loss.item() * n_b
acc_avg += acc
num_exp += n_b
if mode == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_avg /= num_exp
acc_avg /= num_exp
return loss_avg, acc_avg
def evaluate_synset(it_eval, net, images_train, labels_train, testloader, args):
net = net.to(args.device)
images_train = images_train.to(args.device)
labels_train = labels_train.to(args.device)
lr = float(args.lr_net)
Epoch = int(args.epoch_eval_train)
lr_schedule = [Epoch // 2 + 1]
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=0.0005)
criterion = nn.CrossEntropyLoss().to(args.device)
dst_train = TensorDataset(images_train, labels_train)
trainloader = torch.utils.data.DataLoader(dst_train, batch_size=args.batch_train, shuffle=True, num_workers=0)
start = time.time()
for ep in range(Epoch + 1):
loss_train, acc_train = epoch('train', trainloader, net, optimizer, criterion, args, aug=True)
if ep in lr_schedule:
lr *= 0.1
optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9, weight_decay=0.0005)
time_train = time.time() - start
loss_test, acc_test = epoch('test', testloader, net, optimizer, criterion, args, aug=False)
print('%s Evaluate_%02d: epoch = %04d train time = %d s train loss = %.6f train acc = %.4f, test acc = %.4f' % (
get_time(), it_eval, Epoch, int(time_train), loss_train, acc_train, acc_test))
return net, acc_train, acc_test
def augment(images, dc_aug_param, device):
# This can be sped up in the future.
if dc_aug_param != None and dc_aug_param['strategy'] != 'none':
scale = dc_aug_param['scale']
crop = dc_aug_param['crop']
rotate = dc_aug_param['rotate']
noise = dc_aug_param['noise']
strategy = dc_aug_param['strategy']
shape = images.shape
mean = []
for c in range(shape[1]):
mean.append(float(torch.mean(images[:, c])))
def cropfun(i):
im_ = torch.zeros(shape[1], shape[2] + crop * 2, shape[3] + crop * 2, dtype=torch.float, device=device)
for c in range(shape[1]):
im_[c] = mean[c]
im_[:, crop:crop + shape[2], crop:crop + shape[3]] = images[i]
r, c = np.random.permutation(crop * 2)[0], np.random.permutation(crop * 2)[0]
images[i] = im_[:, r:r + shape[2], c:c + shape[3]]
def scalefun(i):
h = int((np.random.uniform(1 - scale, 1 + scale)) * shape[2])
w = int((np.random.uniform(1 - scale, 1 + scale)) * shape[2])
tmp = F.interpolate(images[i:i + 1], [h, w], )[0]
mhw = max(h, w, shape[2], shape[3])
im_ = torch.zeros(shape[1], mhw, mhw, dtype=torch.float, device=device)
r = int((mhw - h) / 2)
c = int((mhw - w) / 2)
im_[:, r:r + h, c:c + w] = tmp
r = int((mhw - shape[2]) / 2)
c = int((mhw - shape[3]) / 2)
images[i] = im_[:, r:r + shape[2], c:c + shape[3]]
def rotatefun(i):
im_ = scipyrotate(images[i].cpu().data.numpy(), angle=np.random.randint(-rotate, rotate), axes=(-2, -1),
cval=np.mean(mean))
r = int((im_.shape[-2] - shape[-2]) / 2)
c = int((im_.shape[-1] - shape[-1]) / 2)
images[i] = torch.tensor(im_[:, r:r + shape[-2], c:c + shape[-1]], dtype=torch.float, device=device)
def noisefun(i):
images[i] = images[i] + noise * torch.randn(shape[1:], dtype=torch.float, device=device)
augs = strategy.split('_')
for i in range(shape[0]):
choice = np.random.permutation(augs)[0] # randomly implement one augmentation
if choice == 'crop':
cropfun(i)
elif choice == 'scale':
scalefun(i)
elif choice == 'rotate':
rotatefun(i)
elif choice == 'noise':
noisefun(i)
return images
def get_daparam(dataset, model, model_eval, ipc):
# We find that augmentation doesn't always benefit the performance.
# So we do augmentation for some of the settings.
dc_aug_param = dict()
dc_aug_param['crop'] = 4
dc_aug_param['scale'] = 0.2
dc_aug_param['rotate'] = 45
dc_aug_param['noise'] = 0.001
dc_aug_param['strategy'] = 'none'
if dataset == 'MNIST':
dc_aug_param['strategy'] = 'crop_scale_rotate'
if model_eval in ['ConvNetBN']: # Data augmentation makes model training with Batch Norm layer easier.
dc_aug_param['strategy'] = 'crop_noise'
return dc_aug_param
def get_eval_pool(eval_mode, model, model_eval):
if eval_mode == 'M': # multiple architectures
model_eval_pool = ['MLP', 'ConvNet', 'LeNet', 'AlexNet', 'VGG11', 'ResNet18']
elif eval_mode == 'B': # multiple architectures with BatchNorm for DM experiments
model_eval_pool = ['ConvNetBN', 'ConvNetASwishBN', 'AlexNetBN', 'VGG11BN', 'ResNet18BN']
elif eval_mode == 'W': # ablation study on network width
model_eval_pool = ['ConvNetW32', 'ConvNetW64', 'ConvNetW128', 'ConvNetW256']
elif eval_mode == 'D': # ablation study on network depth
model_eval_pool = ['ConvNetD1', 'ConvNetD2', 'ConvNetD3', 'ConvNetD4']
elif eval_mode == 'A': # ablation study on network activation function
model_eval_pool = ['ConvNetAS', 'ConvNetAR', 'ConvNetAL', 'ConvNetASwish']
elif eval_mode == 'P': # ablation study on network pooling layer
model_eval_pool = ['ConvNetNP', 'ConvNetMP', 'ConvNetAP']
elif eval_mode == 'N': # ablation study on network normalization layer
model_eval_pool = ['ConvNetNN', 'ConvNetBN', 'ConvNetLN', 'ConvNetIN', 'ConvNetGN']
elif eval_mode == 'S': # itself
if 'BN' in model:
print(
'Attention: Here I will replace BN with IN in evaluation, as the synthetic set is too small to measure BN hyper-parameters.')
model_eval_pool = [model[:model.index('BN')]] if 'BN' in model else [model]
elif eval_mode == 'SS': # itself
model_eval_pool = [model]
else:
model_eval_pool = [model_eval]
return model_eval_pool
class ParamDiffAug():
def __init__(self):
self.aug_mode = 'S' # 'multiple or single'
self.prob_flip = 0.5
self.ratio_scale = 1.2
self.ratio_rotate = 15.0
self.ratio_crop_pad = 0.125
self.ratio_cutout = 0.5 # the size would be 0.5x0.5
self.brightness = 1.0
self.saturation = 2.0
self.contrast = 0.5
def set_seed_DiffAug(param):
if param.latestseed == -1:
return
else:
torch.random.manual_seed(param.latestseed)
param.latestseed += 1
def DiffAugment(x, strategy='', seed=-1, param=None):
if strategy == 'None' or strategy == 'none' or strategy == '':
return x
if seed == -1:
param.Siamese = False
else:
param.Siamese = True
param.latestseed = seed
if strategy:
if param.aug_mode == 'M': # original
for p in strategy.split('_'):
for f in AUGMENT_FNS[p]:
x = f(x, param)
elif param.aug_mode == 'S':
pbties = strategy.split('_')
set_seed_DiffAug(param)
p = pbties[torch.randint(0, len(pbties), size=(1,)).item()]
for f in AUGMENT_FNS[p]:
x = f(x, param)
else:
exit('unknown augmentation mode: %s' % param.aug_mode)
x = x.contiguous()
return x
# We implement the following differentiable augmentation strategies based on the code provided in https://github.com/mit-han-lab/data-efficient-gans.
def rand_scale(x, param):
# x>1, max scale
# sx, sy: (0, +oo), 1: orignial size, 0.5: enlarge 2 times
ratio = param.ratio_scale
set_seed_DiffAug(param)
sx = torch.rand(x.shape[0]) * (ratio - 1.0 / ratio) + 1.0 / ratio
set_seed_DiffAug(param)
sy = torch.rand(x.shape[0]) * (ratio - 1.0 / ratio) + 1.0 / ratio
theta = [[[sx[i], 0, 0],
[0, sy[i], 0], ] for i in range(x.shape[0])]
theta = torch.tensor(theta, dtype=torch.float)
if param.Siamese: # Siamese augmentation:
theta[:] = theta[0]
grid = F.affine_grid(theta, x.shape).to(x.device)
x = F.grid_sample(x, grid)
return x
def rand_rotate(x, param): # [-180, 180], 90: anticlockwise 90 degree
ratio = param.ratio_rotate
set_seed_DiffAug(param)
theta = (torch.rand(x.shape[0]) - 0.5) * 2 * ratio / 180 * float(np.pi)
theta = [[[torch.cos(theta[i]), torch.sin(-theta[i]), 0],
[torch.sin(theta[i]), torch.cos(theta[i]), 0], ] for i in range(x.shape[0])]
theta = torch.tensor(theta, dtype=torch.float)
if param.Siamese: # Siamese augmentation:
theta[:] = theta[0]
grid = F.affine_grid(theta, x.shape).to(x.device)
x = F.grid_sample(x, grid)
return x
def rand_flip(x, param):
prob = param.prob_flip
set_seed_DiffAug(param)
randf = torch.rand(x.size(0), 1, 1, 1, device=x.device)
if param.Siamese: # Siamese augmentation:
randf[:] = randf[0]
return torch.where(randf < prob, x.flip(3), x)
def rand_brightness(x, param):
ratio = param.brightness
set_seed_DiffAug(param)
randb = torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device)
if param.Siamese: # Siamese augmentation:
randb[:] = randb[0]
x = x + (randb - 0.5) * ratio
return x
def rand_saturation(x, param):
ratio = param.saturation
x_mean = x.mean(dim=1, keepdim=True)
set_seed_DiffAug(param)
rands = torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device)
if param.Siamese: # Siamese augmentation:
rands[:] = rands[0]
x = (x - x_mean) * (rands * ratio) + x_mean
return x
def rand_contrast(x, param):
ratio = param.contrast
x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
set_seed_DiffAug(param)
randc = torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device)
if param.Siamese: # Siamese augmentation:
randc[:] = randc[0]
x = (x - x_mean) * (randc + ratio) + x_mean
return x
def rand_crop(x, param):
# The image is padded on its surrounding and then cropped.
ratio = param.ratio_crop_pad
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
set_seed_DiffAug(param)
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
set_seed_DiffAug(param)
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
if param.Siamese: # Siamese augmentation:
translation_x[:] = translation_x[0]
translation_y[:] = translation_y[0]
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(x.size(2), dtype=torch.long, device=x.device),
torch.arange(x.size(3), dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2)
return x
def rand_cutout(x, param):
ratio = param.ratio_cutout
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
set_seed_DiffAug(param)
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
set_seed_DiffAug(param)
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
if param.Siamese: # Siamese augmentation:
offset_x[:] = offset_x[0]
offset_y[:] = offset_y[0]
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(x.size(0), dtype=torch.long, device=x.device),
torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
)
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
mask[grid_batch, grid_x, grid_y] = 0
x = x * mask.unsqueeze(1)
return x
AUGMENT_FNS = {
'color': [rand_brightness, rand_saturation, rand_contrast],
'crop': [rand_crop],
'cutout': [rand_cutout],
'flip': [rand_flip],
'scale': [rand_scale],
'rotate': [rand_rotate],
}