forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdma-axi-dmac.c
739 lines (601 loc) · 19 KB
/
dma-axi-dmac.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/*
* Driver for the Analog Devices AXI-DMAC core
*
* Copyright 2013-2015 Analog Devices Inc.
* Author: Lars-Peter Clausen <[email protected]>
*
* Licensed under the GPL-2.
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <dt-bindings/dma/axi-dmac.h>
#include "dmaengine.h"
#include "virt-dma.h"
/*
* The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
* various instantiation parameters which decided the exact feature set support
* by the core.
*
* Each channel of the core has a source interface and a destination interface.
* The number of channels and the type of the channel interfaces is selected at
* configuration time. A interface can either be a connected to a central memory
* interconnect, which allows access to system memory, or it can be connected to
* a dedicated bus which is directly connected to a data port on a peripheral.
* Given that those are configuration options of the core that are selected when
* it is instantiated this means that they can not be changed by software at
* runtime. By extension this means that each channel is uni-directional. It can
* either be device to memory or memory to device, but not both. Also since the
* device side is a dedicated data bus only connected to a single peripheral
* there is no address than can or needs to be configured for the device side.
*/
#define AXI_DMAC_REG_IRQ_MASK 0x80
#define AXI_DMAC_REG_IRQ_PENDING 0x84
#define AXI_DMAC_REG_IRQ_SOURCE 0x88
#define AXI_DMAC_REG_CTRL 0x400
#define AXI_DMAC_REG_TRANSFER_ID 0x404
#define AXI_DMAC_REG_START_TRANSFER 0x408
#define AXI_DMAC_REG_FLAGS 0x40c
#define AXI_DMAC_REG_DEST_ADDRESS 0x410
#define AXI_DMAC_REG_SRC_ADDRESS 0x414
#define AXI_DMAC_REG_X_LENGTH 0x418
#define AXI_DMAC_REG_Y_LENGTH 0x41c
#define AXI_DMAC_REG_DEST_STRIDE 0x420
#define AXI_DMAC_REG_SRC_STRIDE 0x424
#define AXI_DMAC_REG_TRANSFER_DONE 0x428
#define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
#define AXI_DMAC_REG_STATUS 0x430
#define AXI_DMAC_REG_CURRENT_SRC_ADDR 0x434
#define AXI_DMAC_REG_CURRENT_DEST_ADDR 0x438
#define AXI_DMAC_CTRL_ENABLE BIT(0)
#define AXI_DMAC_CTRL_PAUSE BIT(1)
#define AXI_DMAC_IRQ_SOT BIT(0)
#define AXI_DMAC_IRQ_EOT BIT(1)
#define AXI_DMAC_FLAG_CYCLIC BIT(0)
/* The maximum ID allocated by the hardware is 31 */
#define AXI_DMAC_SG_UNUSED 32U
struct axi_dmac_sg {
dma_addr_t src_addr;
dma_addr_t dest_addr;
unsigned int x_len;
unsigned int y_len;
unsigned int dest_stride;
unsigned int src_stride;
unsigned int id;
bool schedule_when_free;
};
struct axi_dmac_desc {
struct virt_dma_desc vdesc;
bool cyclic;
unsigned int num_submitted;
unsigned int num_completed;
unsigned int num_sgs;
struct axi_dmac_sg sg[];
};
struct axi_dmac_chan {
struct virt_dma_chan vchan;
struct axi_dmac_desc *next_desc;
struct list_head active_descs;
enum dma_transfer_direction direction;
unsigned int src_width;
unsigned int dest_width;
unsigned int src_type;
unsigned int dest_type;
unsigned int max_length;
unsigned int align_mask;
bool hw_cyclic;
bool hw_2d;
};
struct axi_dmac {
void __iomem *base;
int irq;
struct clk *clk;
struct dma_device dma_dev;
struct axi_dmac_chan chan;
struct device_dma_parameters dma_parms;
};
static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
{
return container_of(chan->vchan.chan.device, struct axi_dmac,
dma_dev);
}
static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
{
return container_of(c, struct axi_dmac_chan, vchan.chan);
}
static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
{
return container_of(vdesc, struct axi_dmac_desc, vdesc);
}
static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
unsigned int val)
{
writel(val, axi_dmac->base + reg);
}
static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
{
return readl(axi_dmac->base + reg);
}
static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
{
return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
}
static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
{
return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
}
static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
{
if (len == 0 || len > chan->max_length)
return false;
if ((len & chan->align_mask) != 0) /* Not aligned */
return false;
return true;
}
static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
{
if ((addr & chan->align_mask) != 0) /* Not aligned */
return false;
return true;
}
static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
{
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
struct virt_dma_desc *vdesc;
struct axi_dmac_desc *desc;
struct axi_dmac_sg *sg;
unsigned int flags = 0;
unsigned int val;
val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
if (val) /* Queue is full, wait for the next SOT IRQ */
return;
desc = chan->next_desc;
if (!desc) {
vdesc = vchan_next_desc(&chan->vchan);
if (!vdesc)
return;
list_move_tail(&vdesc->node, &chan->active_descs);
desc = to_axi_dmac_desc(vdesc);
}
sg = &desc->sg[desc->num_submitted];
/* Already queued in cyclic mode. Wait for it to finish */
if (sg->id != AXI_DMAC_SG_UNUSED) {
sg->schedule_when_free = true;
return;
}
desc->num_submitted++;
if (desc->num_submitted == desc->num_sgs) {
if (desc->cyclic)
desc->num_submitted = 0; /* Start again */
else
chan->next_desc = NULL;
} else {
chan->next_desc = desc;
}
sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
if (axi_dmac_dest_is_mem(chan)) {
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
}
if (axi_dmac_src_is_mem(chan)) {
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
}
/*
* If the hardware supports cyclic transfers and there is no callback to
* call and only a single segment, enable hw cyclic mode to avoid
* unnecessary interrupts.
*/
if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback &&
desc->num_sgs == 1)
flags |= AXI_DMAC_FLAG_CYCLIC;
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
}
static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
{
return list_first_entry_or_null(&chan->active_descs,
struct axi_dmac_desc, vdesc.node);
}
static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
unsigned int completed_transfers)
{
struct axi_dmac_desc *active;
struct axi_dmac_sg *sg;
bool start_next = false;
active = axi_dmac_active_desc(chan);
if (!active)
return false;
do {
sg = &active->sg[active->num_completed];
if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
break;
if (!(BIT(sg->id) & completed_transfers))
break;
active->num_completed++;
sg->id = AXI_DMAC_SG_UNUSED;
if (sg->schedule_when_free) {
sg->schedule_when_free = false;
start_next = true;
}
if (active->cyclic)
vchan_cyclic_callback(&active->vdesc);
if (active->num_completed == active->num_sgs) {
if (active->cyclic) {
active->num_completed = 0; /* wrap around */
} else {
list_del(&active->vdesc.node);
vchan_cookie_complete(&active->vdesc);
active = axi_dmac_active_desc(chan);
}
}
} while (active);
return start_next;
}
static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
{
struct axi_dmac *dmac = devid;
unsigned int pending;
bool start_next = false;
pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
if (!pending)
return IRQ_NONE;
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
spin_lock(&dmac->chan.vchan.lock);
/* One or more transfers have finished */
if (pending & AXI_DMAC_IRQ_EOT) {
unsigned int completed;
completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
start_next = axi_dmac_transfer_done(&dmac->chan, completed);
}
/* Space has become available in the descriptor queue */
if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
axi_dmac_start_transfer(&dmac->chan);
spin_unlock(&dmac->chan.vchan.lock);
return IRQ_HANDLED;
}
static int axi_dmac_terminate_all(struct dma_chan *c)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&chan->vchan.lock, flags);
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
chan->next_desc = NULL;
vchan_get_all_descriptors(&chan->vchan, &head);
list_splice_tail_init(&chan->active_descs, &head);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
vchan_dma_desc_free_list(&chan->vchan, &head);
return 0;
}
static void axi_dmac_synchronize(struct dma_chan *c)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
vchan_synchronize(&chan->vchan);
}
static void axi_dmac_issue_pending(struct dma_chan *c)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
unsigned long flags;
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
spin_lock_irqsave(&chan->vchan.lock, flags);
if (vchan_issue_pending(&chan->vchan))
axi_dmac_start_transfer(chan);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
}
static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
{
struct axi_dmac_desc *desc;
unsigned int i;
desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
if (!desc)
return NULL;
for (i = 0; i < num_sgs; i++)
desc->sg[i].id = AXI_DMAC_SG_UNUSED;
desc->num_sgs = num_sgs;
return desc;
}
static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
struct dma_chan *c, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
struct axi_dmac_desc *desc;
struct scatterlist *sg;
unsigned int i;
if (direction != chan->direction)
return NULL;
desc = axi_dmac_alloc_desc(sg_len);
if (!desc)
return NULL;
for_each_sg(sgl, sg, sg_len, i) {
if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
!axi_dmac_check_len(chan, sg_dma_len(sg))) {
kfree(desc);
return NULL;
}
if (direction == DMA_DEV_TO_MEM)
desc->sg[i].dest_addr = sg_dma_address(sg);
else
desc->sg[i].src_addr = sg_dma_address(sg);
desc->sg[i].x_len = sg_dma_len(sg);
desc->sg[i].y_len = 1;
}
desc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}
static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
struct axi_dmac_desc *desc;
unsigned int num_periods, i;
if (direction != chan->direction)
return NULL;
if (!axi_dmac_check_len(chan, buf_len) ||
!axi_dmac_check_addr(chan, buf_addr))
return NULL;
if (period_len == 0 || buf_len % period_len)
return NULL;
num_periods = buf_len / period_len;
desc = axi_dmac_alloc_desc(num_periods);
if (!desc)
return NULL;
for (i = 0; i < num_periods; i++) {
if (direction == DMA_DEV_TO_MEM)
desc->sg[i].dest_addr = buf_addr;
else
desc->sg[i].src_addr = buf_addr;
desc->sg[i].x_len = period_len;
desc->sg[i].y_len = 1;
buf_addr += period_len;
}
desc->cyclic = true;
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}
static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
struct dma_chan *c, struct dma_interleaved_template *xt,
unsigned long flags)
{
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
struct axi_dmac_desc *desc;
size_t dst_icg, src_icg;
if (xt->frame_size != 1)
return NULL;
if (xt->dir != chan->direction)
return NULL;
if (axi_dmac_src_is_mem(chan)) {
if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
return NULL;
}
if (axi_dmac_dest_is_mem(chan)) {
if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
return NULL;
}
dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
if (chan->hw_2d) {
if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
!axi_dmac_check_len(chan, xt->numf))
return NULL;
if (xt->sgl[0].size + dst_icg > chan->max_length ||
xt->sgl[0].size + src_icg > chan->max_length)
return NULL;
} else {
if (dst_icg != 0 || src_icg != 0)
return NULL;
if (chan->max_length / xt->sgl[0].size < xt->numf)
return NULL;
if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
return NULL;
}
desc = axi_dmac_alloc_desc(1);
if (!desc)
return NULL;
if (axi_dmac_src_is_mem(chan)) {
desc->sg[0].src_addr = xt->src_start;
desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
}
if (axi_dmac_dest_is_mem(chan)) {
desc->sg[0].dest_addr = xt->dst_start;
desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
}
if (chan->hw_2d) {
desc->sg[0].x_len = xt->sgl[0].size;
desc->sg[0].y_len = xt->numf;
} else {
desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
desc->sg[0].y_len = 1;
}
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}
static void axi_dmac_free_chan_resources(struct dma_chan *c)
{
vchan_free_chan_resources(to_virt_chan(c));
}
static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
{
kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
}
/*
* The configuration stored in the devicetree matches the configuration
* parameters of the peripheral instance and allows the driver to know which
* features are implemented and how it should behave.
*/
static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
struct axi_dmac_chan *chan)
{
u32 val;
int ret;
ret = of_property_read_u32(of_chan, "reg", &val);
if (ret)
return ret;
/* We only support 1 channel for now */
if (val != 0)
return -EINVAL;
ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
if (ret)
return ret;
if (val > AXI_DMAC_BUS_TYPE_FIFO)
return -EINVAL;
chan->src_type = val;
ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
if (ret)
return ret;
if (val > AXI_DMAC_BUS_TYPE_FIFO)
return -EINVAL;
chan->dest_type = val;
ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
if (ret)
return ret;
chan->src_width = val / 8;
ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
if (ret)
return ret;
chan->dest_width = val / 8;
ret = of_property_read_u32(of_chan, "adi,length-width", &val);
if (ret)
return ret;
if (val >= 32)
chan->max_length = UINT_MAX;
else
chan->max_length = (1ULL << val) - 1;
chan->align_mask = max(chan->dest_width, chan->src_width) - 1;
if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
chan->direction = DMA_MEM_TO_MEM;
else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
chan->direction = DMA_MEM_TO_DEV;
else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
chan->direction = DMA_DEV_TO_MEM;
else
chan->direction = DMA_DEV_TO_DEV;
chan->hw_cyclic = of_property_read_bool(of_chan, "adi,cyclic");
chan->hw_2d = of_property_read_bool(of_chan, "adi,2d");
return 0;
}
static int axi_dmac_probe(struct platform_device *pdev)
{
struct device_node *of_channels, *of_chan;
struct dma_device *dma_dev;
struct axi_dmac *dmac;
struct resource *res;
int ret;
dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
if (!dmac)
return -ENOMEM;
dmac->irq = platform_get_irq(pdev, 0);
if (dmac->irq < 0)
return dmac->irq;
if (dmac->irq == 0)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dmac->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(dmac->base))
return PTR_ERR(dmac->base);
dmac->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(dmac->clk))
return PTR_ERR(dmac->clk);
INIT_LIST_HEAD(&dmac->chan.active_descs);
of_channels = of_get_child_by_name(pdev->dev.of_node, "adi,channels");
if (of_channels == NULL)
return -ENODEV;
for_each_child_of_node(of_channels, of_chan) {
ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
if (ret) {
of_node_put(of_chan);
of_node_put(of_channels);
return -EINVAL;
}
}
of_node_put(of_channels);
pdev->dev.dma_parms = &dmac->dma_parms;
dma_set_max_seg_size(&pdev->dev, dmac->chan.max_length);
dma_dev = &dmac->dma_dev;
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
dma_dev->device_tx_status = dma_cookie_status;
dma_dev->device_issue_pending = axi_dmac_issue_pending;
dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
dma_dev->device_terminate_all = axi_dmac_terminate_all;
dma_dev->device_synchronize = axi_dmac_synchronize;
dma_dev->dev = &pdev->dev;
dma_dev->chancnt = 1;
dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
dma_dev->directions = BIT(dmac->chan.direction);
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
INIT_LIST_HEAD(&dma_dev->channels);
dmac->chan.vchan.desc_free = axi_dmac_desc_free;
vchan_init(&dmac->chan.vchan, dma_dev);
ret = clk_prepare_enable(dmac->clk);
if (ret < 0)
return ret;
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
ret = dma_async_device_register(dma_dev);
if (ret)
goto err_clk_disable;
ret = of_dma_controller_register(pdev->dev.of_node,
of_dma_xlate_by_chan_id, dma_dev);
if (ret)
goto err_unregister_device;
ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED,
dev_name(&pdev->dev), dmac);
if (ret)
goto err_unregister_of;
platform_set_drvdata(pdev, dmac);
return 0;
err_unregister_of:
of_dma_controller_free(pdev->dev.of_node);
err_unregister_device:
dma_async_device_unregister(&dmac->dma_dev);
err_clk_disable:
clk_disable_unprepare(dmac->clk);
return ret;
}
static int axi_dmac_remove(struct platform_device *pdev)
{
struct axi_dmac *dmac = platform_get_drvdata(pdev);
of_dma_controller_free(pdev->dev.of_node);
free_irq(dmac->irq, dmac);
tasklet_kill(&dmac->chan.vchan.task);
dma_async_device_unregister(&dmac->dma_dev);
clk_disable_unprepare(dmac->clk);
return 0;
}
static const struct of_device_id axi_dmac_of_match_table[] = {
{ .compatible = "adi,axi-dmac-1.00.a" },
{ },
};
MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
static struct platform_driver axi_dmac_driver = {
.driver = {
.name = "dma-axi-dmac",
.of_match_table = axi_dmac_of_match_table,
},
.probe = axi_dmac_probe,
.remove = axi_dmac_remove,
};
module_platform_driver(axi_dmac_driver);
MODULE_AUTHOR("Lars-Peter Clausen <[email protected]>");
MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
MODULE_LICENSE("GPL v2");