-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy patheval_smpl_long.py
442 lines (385 loc) · 23.8 KB
/
eval_smpl_long.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import os
from datetime import datetime
import numpy as np
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning import loggers as pl_loggers
from pathlib import Path
from datetime import datetime
from argparse import ArgumentParser
from data.dataset_smpl import Dataset, OBJECT_PATH
from psbody.mesh import Mesh
from scipy.spatial.transform import Rotation
from render.mesh_viz import visualize_body_obj
from train_correction_smpl import LitInteraction as LitObj
from train_diffusion_smpl import LitInteraction
from data.utils import markerset_ssm67_smplh, SIMPLIFIED_MESH
from pytorch3d.transforms import axis_angle_to_matrix, matrix_to_axis_angle, rotation_6d_to_matrix, axis_angle_to_quaternion
from copy import deepcopy
from tools import point2point_signed
from data.tools import vertex_normals
from eval_smpl_short import metrics, smooth
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def get_batch(body, obj, batch, verts, pel):
batch = batch.copy()
frames = []
T, B, _ = body.shape
for i in range(T):
smplfit_params = batch['frames'][i]['smplfit_params'].copy()
objfit_params = batch['frames'][i]['objfit_params'].copy()
pelvis = pel[i, :].cpu().numpy()
# print(np.linalg.norm(objfit_params['trans'] - pelvis))
if i == 0:
centroid = pelvis
rotation_v = np.eye(3).astype(np.float32)
rotation = np.eye(3).astype(np.float32)
trans = body[i, :, -3:].cpu().numpy() - centroid
pelvis = pelvis - centroid
pelvis_original = pelvis - trans # pelvis position in original smpl coords system
smplfit_params['trans'] = torch.from_numpy(np.dot(trans + pelvis_original, rotation.T) - pelvis_original).unsqueeze(0).repeat(B, 1)
human_verts_tran = verts[i, :, :].cpu().numpy() - centroid
human_verts_tran = np.dot(human_verts_tran, rotation.T)
human_verts_normal = np.zeros_like(human_verts_tran)
human_verts = torch.from_numpy(np.concatenate([human_verts_tran, human_verts_normal], axis=1)).unsqueeze(0).repeat(B, 1, 1)
# smplfit_params['trans'] = np.dot(smplfit_params['trans'], rotation.T)
r_ori = Rotation.from_rotvec(body[i, 0, 0:3].cpu().numpy())
r_new = Rotation.from_matrix(rotation) * r_ori
smplfit_params['pose'][:, :3] = torch.from_numpy(r_new.as_rotvec()).unsqueeze(0).repeat(B, 1)
smplfit_params['pose'][:, 3:] = body[i, :, 3:-3].cpu()
trans = obj[i, 0, 3:6].cpu().numpy() - centroid
objfit_params['trans'] = torch.from_numpy(np.dot(trans, rotation.T)).unsqueeze(0).repeat(B, 1)
r_ori = obj[i, 0, 0:3].cpu().numpy()
# print(np.linalg.norm(objfit_params['trans'] - smplfit_params['trans']))
r_ori = Rotation.from_rotvec(r_ori)
r_new = Rotation.from_matrix(rotation) * r_ori
objfit_params['angle'] = torch.from_numpy(r_new.as_rotvec()).unsqueeze(0).repeat(B, 1)
record = {
'smplfit_params': smplfit_params,
'objfit_params': objfit_params,
'human_verts': human_verts,
'markers': human_verts[:, markerset_ssm67_smplh, :]
}
# print(verts[i, 0, :3].cpu().numpy(), human_verts[0, 0, :3])
# if i == 0:
# print('angle, angle_norm', axis_angle_to_matrix(body[i, 0, 0:3]), axis_angle_to_matrix(smplfit_params['pose'][:, :3]))
frames.append(record)
frames = frames + [frames[-1]] * args.future_len
records = {
'centroid': centroid,
'rotation': rotation,
'rotation_v': rotation_v,
'frames': frames,
'obj_points': batch['obj_points'],
'gender': batch['gender'],
}
return records
def denoised_fn(x, t, model_kwargs):
if t[0] > 500 or t[0] % 50 != 0:
return x
body, obj = torch.split(x.squeeze(1).permute(2, 0, 1).contiguous(), args.smpl_dim+3, dim=2)
body_gt, obj_gt = torch.split(model_kwargs['y']['inpainted_motion'].squeeze(1).permute(2, 0, 1).contiguous(), args.smpl_dim+3, dim=2)
T, B, _ = body[:, :, :-3].shape
obj_rot_matrix = rotation_6d_to_matrix(obj[:, :, :-3].view(T, B, 6))
body_rot = matrix_to_axis_angle(rotation_6d_to_matrix(body[:, :, :-3].view(T, B, -1, 6))).view(T, B, -1)
hand_pose = model_kwargs['y']['hand_pose']
body_pred = torch.cat([body_rot, hand_pose, body[:, :, -3:]], dim=2)
body_pred = body_pred.detach().clone()
body_pred_batch = body_pred.view(T * B, -1)
smpl = model_kwargs['y']['smpl']
betas_batch = model_kwargs['y']['beta'].view(T * B, -1)
verts, jtr, _, _ = smpl(body_pred_batch[:, :-3],
th_betas=betas_batch,
th_trans=body_pred_batch[:, -3:])
markers = verts[:, markerset_ssm67_smplh]
markers = markers.view(T, B, -1, 3)
obj_model = model_kwargs['y']['obj_model']
obj_points_pred = torch.matmul(model_kwargs['y']['obj_points'].unsqueeze(0), obj_rot_matrix.permute(0, 1, 3, 2)) + obj[:, :, -3:].unsqueeze(2)
# print(torch.where((torch.norm((markers.unsqueeze(2) - obj_points_pred.unsqueeze(3)), dim=4) < 0.03).any(dim=3)))
normals = vertex_normals(verts, smpl.th_faces.unsqueeze(0).repeat(T * B, 1, 1))
o2h_signed, h2o_signed, o2h_idx, h2o_idx, o2h, h2o = point2point_signed(verts.view(T * B, -1, 3), obj_points_pred.view(T * B, -1, 3), x_normals=normals, return_vector=True)
w = torch.zeros([T * B, o2h_signed.size(1)]).to(o2h_signed.device)
w_dist = (o2h_signed < 0.01) * (o2h_signed > 0)
w_dist_neg = o2h_signed < 0
w[w_dist] = 0 # small weight for far away vertices
w[w_dist_neg] = 20 # large weight for penetration
loss_dist_o = torch.einsum('ij,ij->ij', torch.abs(o2h_signed), w).view(T, B, -1) #
distance = (torch.norm((markers.unsqueeze(2) - obj_points_pred.unsqueeze(3)), dim=4)).min(dim=3)[0].min(dim=2)[0].mean(dim=0)
condition = torch.logical_not(torch.logical_and(loss_dist_o[args.past_len:].mean(dim=2).mean(dim=0) < 0.002, distance < 0.02))
contact_human_label = (torch.norm((markers.unsqueeze(2) - obj_points_pred.unsqueeze(3)), dim=4) < 0.02).any(dim=2)
contact = torch.zeros_like(contact_human_label, device=contact_human_label.device)
contact[contact_human_label] = 1
contact = contact[args.past_len:].sum(dim=0)
obj_proj = obj_model.model.sample(obj_gt[:, :, :-3], obj_gt[:, :, -3:], markers, contact)
x_ = torch.cat([body, obj_proj], dim=2).permute(1, 2, 0).unsqueeze(1).contiguous()
x_ = t[0] / 1000 * x + (1 - t[0] / 1000) * x_
x[condition] = x_[condition]
return x
def sample_once_proj(batch):
with torch.no_grad():
embedding, gt = model.model._get_embeddings(batch, device)
# [t, b, n] -> [bs, njoints, nfeats, nframes]
gt = gt.permute(1, 2, 0).unsqueeze(1).contiguous()
model_kwargs = {'y': {'cond': embedding}}
model_kwargs['y']['inpainted_motion'] = gt
model_kwargs['y']['inpainting_mask'] = torch.ones_like(gt, dtype=torch.bool,
device=device) # True means use gt motion
model_kwargs['y']['inpainting_mask'][:, :, :, args.past_len:] = False # do inpainting in those frames
sample_fn = model.diffusion.p_sample_loop
hand_pose = torch.cat([frame['smplfit_params']['pose'][:, 66:].unsqueeze(0) for frame in batch['frames']], dim=0).float().to(device)
model_kwargs['y']['hand_pose'] = hand_pose[idx_pad]
smpl = model_kwargs['y']['smpl'] = model.body_model['male']
model_kwargs['y']['beta'] = torch.stack([record['smplfit_params']['betas'] for record in batch['frames']], dim=0).to(device)
model_kwargs['y']['obj_model'] = obj_model
model_kwargs['y']['obj_points'] = batch['obj_points'][:, :, :3].float().to(device)
noise = torch.randn(*gt.shape, device=device)
sample = sample_fn(model.model, gt.shape, clip_denoised=False, noise=noise, model_kwargs=model_kwargs, denoised_fn=denoised_fn)
body_pred, obj_pred = torch.split(sample.squeeze(1).permute(2, 0, 1).contiguous(), args.smpl_dim+3, dim=2)
body_gt, obj_gt = torch.split(gt.squeeze(1).permute(2, 0, 1).contiguous(), args.smpl_dim+3, dim=2)
T, B, _ = body_pred[:, :, :-3].shape
body_rot = matrix_to_axis_angle(rotation_6d_to_matrix(body_pred[:, :, :-3].view(T, B, -1, 6))).view(T, B, -1)
body_rot_gt = matrix_to_axis_angle(rotation_6d_to_matrix(body_gt[:, :, :-3].view(T, B, -1, 6))).view(T, B, -1)
obj_rot_matrix = rotation_6d_to_matrix(obj_pred[:, :, :-3].view(T, B, 6))
obj_rot = matrix_to_axis_angle(obj_rot_matrix).view(T, B, -1)
obj_rot_gt_matrix = rotation_6d_to_matrix(obj_gt[:, :, :-3].view(T, B, 6))
obj_rot_gt = matrix_to_axis_angle(obj_rot_gt_matrix).view(T, B, -1)
body_pred = torch.cat([body_rot, hand_pose[idx_pad], body_pred[:, :, -3:]], dim=2)
body_gt = torch.cat([body_rot_gt, hand_pose, body_gt[:, :, -3:]], dim=2)
body = body_pred.detach().clone()
betas = torch.stack([record['smplfit_params']['betas'] for record in batch['frames']], dim=0).to(device)
body_batch = body.view(T * B, -1)
betas_batch = betas.view(T * B, -1)
smpl = model.body_model['male']
verts, jtr, _, _ = smpl(body_batch[:, :-3],
th_betas=betas_batch,
th_trans=body_batch[:, -3:])
obj_pred = torch.cat([obj_rot, obj_pred[:, :, -3:]], dim=2)
return obj_pred, body_pred, verts.view(T, B, -1, 3), jtr.view(T, B, -1, 3), jtr.view(T, B, -1, 3)[:, :, 0, :]
def sample_once(batch):
with torch.no_grad():
embedding, gt = model.model._get_embeddings(batch, device)
# [t, b, n] -> [bs, njoints, nfeats, nframes]
gt = gt.permute(1, 2, 0).unsqueeze(1).contiguous()
model_kwargs = {'y': {'cond': embedding}}
model_kwargs['y']['inpainted_motion'] = gt
model_kwargs['y']['inpainting_mask'] = torch.ones_like(gt, dtype=torch.bool,
device=device) # True means use gt motion
model_kwargs['y']['inpainting_mask'][:, :, :, args.past_len:] = False # do inpainting in those frames
sample_fn = model.diffusion.p_sample_loop
noise = torch.randn(*gt.shape, device=device)
sample = sample_fn(model.model, gt.shape, clip_denoised=False, noise=noise, model_kwargs=model_kwargs)
body_pred, obj_pred = torch.split(sample.squeeze(1).permute(2, 0, 1).contiguous(), args.smpl_dim+3, dim=2)
body_gt, obj_gt = torch.split(gt.squeeze(1).permute(2, 0, 1).contiguous(), args.smpl_dim+3, dim=2)
T, B, _ = body_pred[:, :, :-3].shape
body_rot = matrix_to_axis_angle(rotation_6d_to_matrix(body_pred[:, :, :-3].view(T, B, -1, 6))).view(T, B, -1)
body_rot_gt = matrix_to_axis_angle(rotation_6d_to_matrix(body_gt[:, :, :-3].view(T, B, -1, 6))).view(T, B, -1)
obj_rot = matrix_to_axis_angle(rotation_6d_to_matrix(obj_pred[:, :, :-3].view(T, B, -1, 6))).view(T, B, -1)
obj_rot_gt = matrix_to_axis_angle(rotation_6d_to_matrix(obj_gt[:, :, :-3].view(T, B, -1, 6))).view(T, B, -1)
hand_pose = torch.cat([frame['smplfit_params']['pose'][:, 66:].unsqueeze(0) for frame in batch['frames']], dim=0).float().to(device)
body_pred = torch.cat([body_rot, hand_pose[idx_pad], body_pred[:, :, -3:]], dim=2)
body_gt = torch.cat([body_rot_gt, hand_pose, body_gt[:, :, -3:]], dim=2)
body = body_pred.detach().clone()
betas = torch.stack([record['smplfit_params']['betas'] for record in batch['frames']], dim=0).to(device)
body_batch = body.view(T * B, -1)
betas_batch = betas.view(T * B, -1)
smpl = model.body_model['male']
verts, jtr, _, _ = smpl(body_batch[:, :-3],
th_betas=betas_batch,
th_trans=body_batch[:, -3:])
obj_pred = torch.cat([obj_rot, obj_pred[:, :, -3:]], dim=2)
return obj_pred, body_pred, verts.view(T, B, -1, 3), jtr.view(T, B, -1, 3), jtr.view(T, B, -1, 3)[:, :, 0, :]
def get_gt(batch):
with torch.no_grad():
embedding, gt = model.model._get_embeddings(batch, device)
# [t, b, n] -> [bs, njoints, nfeats, nframes]
gt = gt.permute(1, 2, 0).unsqueeze(1).contiguous()
body_gt, obj_gt = torch.split(gt.squeeze(1).permute(2, 0, 1).contiguous(), args.smpl_dim+3, dim=2)
T, B, _ = body_gt[:, :, :-3].shape
body_rot_gt = matrix_to_axis_angle(rotation_6d_to_matrix(body_gt[:, :, :-3].view(T, B, -1, 6))).view(T, B, -1)
obj_rot_gt = matrix_to_axis_angle(rotation_6d_to_matrix(obj_gt[:, :, :-3].view(T, B, -1, 6))).view(T, B, -1)
hand_pose = torch.cat([frame['smplfit_params']['pose'][:, 66:].unsqueeze(0) for frame in batch['frames']], dim=0).float().to(device)
body_gt = torch.cat([body_rot_gt, hand_pose, body_gt[:, :, -3:]], dim=2)
obj_gt = torch.cat([obj_rot_gt, obj_gt[:, :, -3:]], dim=2)
smpl = model.body_model['male']
faces = smpl.th_faces
betas = torch.stack([record['smplfit_params']['betas'] for record in batch['frames']], dim=0).to(device)
betas_batch = betas.view(T * B, -1)
body_gt_batch = body_gt.view(T * B, -1)
verts_gt, jtr_gt, _, _ = smpl(body_gt_batch[:, :-3],
th_betas=betas_batch,
th_trans=body_gt_batch[:, -3:])
return obj_gt, jtr_gt.view(T, B, -1, 3), body_gt, faces
def sample(name, T=0):
if name == 'correction':
sample_func = sample_once_proj
else:
sample_func = sample_once
metric_dict = dict(
global_mpjpe = 0,
local_mpjpe = 0,
body_translation = 0,
obj_translation = 0,
obj_rot_error = 0,
penetrate = 0
)
with torch.no_grad():
for i, batch in enumerate(val_loader):
global_mpjpe = torch.zeros(args.batch_size).to(device) + 1e10
local_mpjpe = torch.zeros(args.batch_size).to(device) + 1e10
body_translation = torch.zeros(args.batch_size).to(device) + 1e10
obj_translation = torch.zeros(args.batch_size).to(device) + 1e10
obj_rot_error = torch.zeros(args.batch_size).to(device) + 1e10
penetrate = torch.zeros(args.batch_size).to(device) + 1e10
obj_gt, jtr_gt, body_gt, faces = get_gt(batch)
for j in range(args.diverse_samples):
new_batch = deepcopy(batch)
obj, body, verts, jtrs, pelvis = sample_func(new_batch)
for k in range(T):
new_batch = get_batch(body[-args.past_len:], obj[-args.past_len:], new_batch, verts[-args.past_len:], pelvis[-args.past_len:])
obj_, body_, verts_, _, new_pelvis = sample_func(new_batch)
# if k >= 1:
# visualize(batch, k, obj_, verts_, faces, 'inter')
obj_, body_, verts_, pelvis_ = denormalize(obj_, body_, verts_, new_batch, new_pelvis)
obj = torch.cat([obj, obj_[args.past_len:]], dim=0)
body = torch.cat([body, body_[args.past_len:]], dim=0)
verts = torch.cat([verts, verts_[args.past_len:]], dim=0)
pelvis = torch.cat([pelvis, pelvis_[args.past_len:]], dim=0)
obj, body, verts, pelvis = correct(obj, body, verts, pelvis)
metric = metrics(obj[args.past_len:], jtrs[args.past_len:], body[args.past_len:], obj_gt[args.past_len:], jtr_gt[args.past_len:], body_gt[args.past_len:], verts[args.past_len:], faces, batch['obj_points'][:, :, :3].float().to(device))
global_mpjpe = torch.stack([global_mpjpe, metric['global_mpjpe']])
local_mpjpe = torch.stack([local_mpjpe, metric['local_mpjpe']])
body_translation = torch.stack([body_translation, metric['body_translation']])
obj_translation = torch.stack([obj_translation, metric['obj_translation']])
obj_rot_error = torch.stack([obj_rot_error, metric['obj_rot_error']])
penetrate = torch.stack([penetrate, metric['penetrate']])
obj, body, verts, jtrs, pelvis = smooth(obj, body, verts, jtrs, pelvis)
if i % args.render_epoch == 0:
visualize(batch, i, obj[:, 0], verts[:, 0], faces, name)
metric_dict['global_mpjpe'] += global_mpjpe.min(dim=0)[0].mean().item()
metric_dict['local_mpjpe'] += local_mpjpe.min(dim=0)[0].mean().item()
metric_dict['body_translation'] += body_translation.min(dim=0)[0].mean().item()
metric_dict['obj_translation'] += obj_translation.min(dim=0)[0].mean().item()
metric_dict['obj_rot_error'] += obj_rot_error.min(dim=0)[0].mean().item()
metric_dict['penetrate'] += penetrate.min(dim=0)[0].mean().item()
print(i+1)
print('global_mpjpe', metric_dict['global_mpjpe'] / (i+1))
print('local_mpjpe', metric_dict['local_mpjpe'] / (i+1))
print('body_translation', metric_dict['body_translation'] / (i+1))
print('obj_translation', metric_dict['obj_translation'] / (i+1))
print('obj_rot_error', metric_dict['obj_rot_error'] / (i+1))
print('penetrate', metric_dict['penetrate'] / (i+1))
def visualize(batch, j, obj, verts, faces, name):
verts = verts.detach().cpu().numpy()
faces = faces.cpu().numpy()
obj_verts = []
# visualize
export_file = Path.joinpath(save_dir, 'render')
export_file.mkdir(exist_ok=True, parents=True)
# mask_video_paths = [join(seq_save_path, f'mask_k{x}.mp4') for x in reader.seq_info.kids]
rend_video_path = os.path.join(export_file, 's{}_l{}_r{}_{}_{}.gif'.format(batch['start_frame'][0], obj.shape[0], args.sample_rate, j, name))
for t in range(obj.shape[0]):
# print(record['smplfit_params'])
mesh_obj = Mesh()
mesh_obj.load_from_file(os.path.join(OBJECT_PATH, SIMPLIFIED_MESH[batch['obj_name'][0]]))
mesh_obj_v = mesh_obj.v.copy()
# center the meshes
center = np.mean(mesh_obj_v, 0)
mesh_obj_v = mesh_obj_v - center
angle, trans = obj[t][:-3].detach().cpu().numpy(), obj[t][-3:].detach().cpu().numpy()
rot = Rotation.from_rotvec(angle).as_matrix()
# transform canonical mesh to fitting
mesh_obj_v = np.matmul(mesh_obj_v, rot.T) + trans
obj_verts.append(mesh_obj_v)
m1 = visualize_body_obj(verts, faces, np.array(obj_verts), mesh_obj.f, past_len=args.past_len, save_path=rend_video_path, sample_rate=args.sample_rate)
if __name__ == '__main__':
if torch.cuda.is_available():
print(torch.cuda.get_device_name(0))
# args
parser = ArgumentParser()
parser.add_argument("--model", type=str, default='Diffusion')
parser.add_argument("--use_pointnet2", type=int, default=1)
parser.add_argument("--num_obj_keypoints", type=int, default=256)
parser.add_argument("--sample_rate", type=int, default=1)
# transformer
parser.add_argument("--latent_dim", type=int, default=256)
parser.add_argument("--embedding_dim", type=int, default=256)
parser.add_argument("--num_heads", type=int, default=4)
parser.add_argument("--ff_size", type=int, default=1024)
parser.add_argument("--activation", type=str, default='gelu')
parser.add_argument("--dropout", type=float, default=0.1)
parser.add_argument("--num_layers", type=int, default=4)
parser.add_argument("--latent_usage", type=str, default='memory')
parser.add_argument("--template_type", type=str, default='zero')
parser.add_argument('--star_graph', default=False, action='store_true')
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--l2_norm", type=float, default=0)
parser.add_argument("--robust_kl", type=int, default=1)
parser.add_argument("--weight_template", type=float, default=0.1)
parser.add_argument("--weight_kl", type=float, default=1e-2)
parser.add_argument("--weight_contact", type=float, default=0)
parser.add_argument("--weight_dist", type=float, default=1)
parser.add_argument("--weight_penetration", type=float, default=0) #10
parser.add_argument("--weight_smplx_rot", type=float, default=1)
parser.add_argument("--weight_smplx_nonrot", type=float, default=0.2)
parser.add_argument("--weight_obj_rot", type=float, default=0.1)
parser.add_argument("--weight_obj_nonrot", type=float, default=0.2)
parser.add_argument("--weight_past", type=float, default=0.5)
parser.add_argument("--weight_jtr", type=float, default=0.1)
parser.add_argument("--weight_jtr_v", type=float, default=500)
parser.add_argument("--weight_v", type=float, default=1)
parser.add_argument("--use_contact", type=int, default=0)
parser.add_argument("--use_annealing", type=int, default=0)
# dataset
parser.add_argument("--past_len", type=int, default=10)
parser.add_argument("--future_len", type=int, default=25)
# train
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--profiler", type=str, default='simple', help='simple or advanced')
parser.add_argument("--gpus", type=int, default=1)
parser.add_argument("--max_epochs", type=int, default=1000)
parser.add_argument("--second_stage", type=int, default=20,
help="annealing some loss weights in early epochs before this num")
parser.add_argument("--expr_name", type=str, default=datetime.now().strftime("%H:%M:%S.%f"))
parser.add_argument("--render_epoch", type=int, default=50)
parser.add_argument("--resume_checkpoint", type=str, default=None)
parser.add_argument("--resume_checkpoint_obj", type=str, default=None)
parser.add_argument("--debug", type=int, default=0)
parser.add_argument("--mode", type=str, default='correction')
parser.add_argument("--index", type=int, default=-1)
parser.add_argument("--dct", type=int, default=10)
parser.add_argument("--autoregressive", type=int, default=0)
# diffusion
parser.add_argument("--noise_schedule", default='cosine', choices=['linear', 'cosine'], type=str,
help="Noise schedule type")
parser.add_argument("--sigma_small", default=True, type=bool, help="Use smaller sigma values.")
parser.add_argument("--diffusion_steps", type=int, default=1000)
parser.add_argument("--cond_mask_prob", default=0, type=float,
help="The probability of masking the condition during training."
" For classifier-free guidance learning.")
parser.add_argument("--diverse_samples", type=int, default=1)
args = parser.parse_args()
idx_pad = list(range(args.past_len)) + [args.past_len - 1] * args.future_len
# make demterministic
pl.seed_everything(233, workers=True)
torch.autograd.set_detect_anomaly(True)
# rendering and results
results_folder = "./results"
os.makedirs(results_folder, exist_ok=True)
test_dataset = Dataset(mode = 'test', past_len=args.past_len, future_len=args.future_len)
args.smpl_dim = 66 * 2
args.num_obj_points = test_dataset.num_obj_points
args.num_verts = len(markerset_ssm67_smplh)
#pin_memory cause warning in pytorch 1.9.0
val_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False,
drop_last=True, pin_memory=False)
print('dataset loaded')
model = LitInteraction.load_from_checkpoint(args.resume_checkpoint, args=args).to(device)
obj_model = LitObj.load_from_checkpoint(args.resume_checkpoint_obj, args=args).to(device)
model.eval()
obj_model.eval()
tb_logger = pl_loggers.TensorBoardLogger(str(results_folder + '/sample'), name=args.expr_name)
save_dir = Path(tb_logger.log_dir) # for this version
print(save_dir)
# sample()
sample(args.mode)