This page is for parameter specification in ThunderSVM. The parameters used in ThunderSVM are identical to LibSVM, so existing LibSVM users can easily get used to ThunderSVM.
command line options:
-
-s: set the type of SVMs (default=0)
- 0 -- C-SVC
- 1 --
$ \nu $
-SVC - 2 -- one-class SVMs
- 3 --
$ \epsilon $
-SVR - 4 --
$ \nu $
-SVR
-
-t: set the type of kernel function (default=2)
- 0 -- linear:
$ \boldsymbol{x}_i^T \cdot \boldsymbol{x}_j $
- 1 -- polynomial:
$ (\gamma \boldsymbol{x}_i^T \cdot \boldsymbol{x}_j + r)^d $
- 2 -- radial basis function (RBF):
$ \exp(-\gamma ||\boldsymbol{x}_i - \boldsymbol{x}_j||^2) $
- 3 -- sigmoid:
$ tanh(\gamma \boldsymbol{x}_i^T \cdot \boldsymbol{x}_j+ r) $
- 0 -- linear:
-
-d: set the degree in kernel function (default=3)
-
-g: set
$ gamma $
in kernel function (default=$ \frac{1}{\text{num_features}} $
) -
-r: set
$ r $
in kernel function (default=0) -
-c: set the parameter C of C-SVC,
$ \epsilon $
-SVR, and$ \nu $
-SVR (default=1) -
-n: set the parameter
$ \nu $
of$ \nu $
-SVC, one-class SVM, and$ \nu $
-SVR (default=0.5) -
-p: set the
$ \epsilon $
in loss function of$ \epsilon $
-SVR (default=0.1) -
-m: set cache memory size in MB (default=100)
-
-e: set tolerance of termination criterion (default=0.001)
-
-h: whether to use the shrinking heuristics, 0 or 1 (default=1)
-
-b: whether to train probabilistic SVC or SVR, 0 or 1 (default=0)
-
-wi: for weighted C-SVC, set the parameter C of class i to
$ wi \times C $
(default=1) -
-v n: n-fold cross validation mode
-
-u n: specify which gpu to use (default=0)
The options in italic are not applicable for GPUs, and the alternative optimizations are implemented with automatically setting working set size.