-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathframe_selection.py
110 lines (85 loc) · 4.14 KB
/
frame_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import copy
from matplotlib.pyplot import contour
from tqdm import tqdm
import shutil
import pickle
import torch
import numpy as np
import open3d as o3d
from utils import config, misc, geometry
def check_condition(pose, last_kf_pose, min_angle, min_distance):
angle = np.arccos(
((np.linalg.inv(pose[:3, :3]) @ last_kf_pose[:3, :3] @
np.array([0, 0, 1]).T) * np.array([0, 0, 1])).sum())
dis = np.linalg.norm(pose[:3, 3] - last_kf_pose[:3, 3])
if angle > (min_angle / 180) * np.pi or dis > min_distance:
return True
else:
return False
def main():
args = config.load_parser()
gt_poses = misc.load_gt_pose(args)
if not os.path.exists(args.scene_path):
os.makedirs(args.scene_path)
key_frames = []
keyframes_gt = []
last_kf_pose = np.eye(4)
if args.pseudo_lidar:
# load depth file
depth_path = os.path.join(args.data_path, "depth")
save_depth_path = os.path.join(args.scene_path, "depth")
if not os.path.exists(save_depth_path):
os.makedirs(save_depth_path)
for frame_num, depth_file in enumerate(tqdm(sorted(os.listdir(depth_path), key=lambda s: int(s.split('.')[0])),
desc = "raw frames")):
depth_file = os.path.join(depth_path, depth_file)
gt_pose = gt_poses[frame_num]
if np.any(np.isnan(gt_pose)) or np.any(np.isinf(gt_pose)):
continue
if len(key_frames) == 0 or check_condition(gt_pose, last_kf_pose, args.min_ang, args.min_trans):
if args.use_disturb:
init_pose = misc.disturb_pose(copy.deepcopy(gt_pose), args.disturb)
else:
init_pose = gt_pose
key_frame_info = (frame_num, torch.from_numpy(init_pose).to(args.device))
key_frames.append(key_frame_info)
keyframes_gt.append(gt_pose)
shutil.copy(depth_file, save_depth_path)
last_kf_pose = gt_pose
else:
# load pointcloud file
pcd_path = os.path.join(args.data_path, "pointcloud")
save_pcd_path = os.path.join(args.scene_path, "pointcloud")
if not os.path.exists(save_pcd_path):
os.makedirs(save_pcd_path)
Tc2l = np.array([[0.0, 0.0, 1.0, 0.0],
[-1.0, 0.0, 0.0, 0.0],
[0.0, -1.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 1.0]], dtype = np.float32)
for frame_num, pcd_file in enumerate(tqdm(sorted(os.listdir(pcd_path), key=lambda s: int(s.split('.')[0])),
desc = "raw frames")):
save_pcd_file = os.path.join(save_pcd_path, pcd_file)
pcd_file = os.path.join(pcd_path, pcd_file)
gt_pose = gt_poses[frame_num]
gt_pose = gt_pose @ Tc2l
if len(key_frames) == 0 or check_condition(gt_pose, last_kf_pose, args.min_ang, args.min_trans):
if args.use_disturb:
init_pose = misc.disturb_pose(copy.deepcopy(gt_pose), args.disturb)
else:
init_pose = gt_pose
key_frame_info = (frame_num, torch.from_numpy(init_pose).to(args.device))
key_frames.append(key_frame_info)
keyframes_gt.append(gt_pose)
pcd = o3d.io.read_point_cloud(pcd_file)
pcd = geometry.pcd_preprocess(pcd, args.max_dist)
o3d.io.write_point_cloud(save_pcd_file, pcd)
last_kf_pose = gt_pose
save_pickle = os.path.join(args.scene_path, "key_frames.pkl")
with open(save_pickle, "wb") as pickle_file:
pickle.dump(key_frames, pickle_file)
save_pickle = os.path.join(args.scene_path, "keyframes_gt.pkl")
with open(save_pickle, "wb") as pickle_file:
pickle.dump(keyframes_gt, pickle_file)
if __name__ == "__main__":
main()