forked from Muennighoff/vilio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_robertaV.py
546 lines (420 loc) · 19.4 KB
/
pretrain_robertaV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import collections
import os
import random
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from param import args
from fts_lmdb.hm_pretrain_data import InputExample, LXMERTDataset, LXMERTTorchDataset
from fts_lmdb.hm_data import HMEvaluator
from utils.pandas_scripts import clean_data
from src.vilio.transformers.tokenization_auto import AutoTokenizer
from src.vilio.transformers.optimization import AdamW, get_linear_schedule_with_warmup
from src.vilio.modeling_robertaV import RobertaVPretraining
DataTuple = collections.namedtuple("DataTuple", 'dataset torchdset loader evaluator')
def get_tuple(splits: str, bs: int, shuffle=False, drop_last=False, topk=-1) -> DataTuple:
# Decide which QA datasets would be used in pre-training.
# Options: vqa, gqa, visual7w
# Note: visual7w is a part of vgqa, we take the name here.
qa_sets = args.qa_sets
if qa_sets is not None:
qa_sets = set(qa_set.lower().strip() for qa_set in qa_sets.split(","))
print(splits)
# Build dataset, data loader, and evaluator.
dset = LXMERTDataset(splits)
tset = LXMERTTorchDataset(splits) # Remove topk
data_loader = DataLoader(
tset, batch_size=bs,
shuffle=shuffle, num_workers=args.num_workers,
collate_fn=lambda x: x,
drop_last=drop_last, pin_memory=True
)
evaluator = HMEvaluator(tset)
print()
return DataTuple(dataset=dset, torchdset=tset, loader=data_loader, evaluator=evaluator)
# Create pretrain.jsonl & traindev data
clean_data("./data")
train_tuple = get_tuple(args.train, args.batch_size, shuffle=True, drop_last=True)
if args.valid != "":
valid_bsize = 500
valid_tuple = get_tuple(
args.valid, bs=valid_bsize,
shuffle=False, drop_last=False
)
else:
valid_tuple = None
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids, input_mask, segment_ids, lm_label_ids,
visual_feats, obj_labels,
is_matched, ans, vl_label):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.lm_label_ids = lm_label_ids
self.visual_feats = visual_feats
self.obj_labels = obj_labels
self.is_matched = is_matched
self.ans = ans
self.vl_label = vl_label
def random_word(tokens, tokenizer):
"""
Masking some random tokens for Language Model task with probabilities as in the original BERT paper.
:param tokens: list of str, tokenized sentence.
:param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here)
:return: (list of str, list of int), masked tokens and related labels for LM prediction
"""
output_label = []
for i, token in enumerate(tokens):
prob = random.random()
# mask token with probability
ratio = args.word_mask_rate
if prob < ratio:
prob /= ratio
# 80% randomly change token to mask token
if prob < 0.8:
tokens[i] = "<mask>" # Not [MASK] as in normal Bert
# 10% randomly change token to random token
elif prob < 0.9:
tokens[i] = random.choice(list(tokenizer.get_vocab().items()))[0]
# -> rest 10% randomly keep current token
# append current token to output (we will predict these later)
try:
output_label.append(tokenizer.get_vocab()[token])
except KeyError:
print("Not found:", token)
# For unknown words (should not occur with BPE vocab)
output_label.append(tokenizer.vocab["<unk>"]) # Not [UNK] as in Bert
else:
# no masking token (will be ignored by loss function later)
output_label.append(-1)
return tokens, output_label
def mask_tokens(inputs: torch.Tensor, tokenizer):
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
mlm_probability = 0.15
if tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the --mlm flag if you want to use this tokenizer."
)
labels = inputs.clone()
# We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
probability_matrix = torch.full(labels.shape, mlm_probability)
special_tokens_mask = [
tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
]
probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
if tokenizer._pad_token is not None:
padding_mask = labels.eq(tokenizer.pad_token_id)
probability_matrix.masked_fill_(padding_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -1 #00 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def random_feat(feats):
mask_feats = feats.clone() #copy()
feat_mask = np.zeros(len(feats), dtype=np.float32)
for i in range(len(feats)):
prob = random.random()
# mask token with probability
if prob < args.obj_mask_rate:
prob /= args.obj_mask_rate
# 80% randomly change token to zero feat
if prob < 0.8:
mask_feats[i, :] = 0.
# 10% randomly change token to random feat
elif prob < 0.9:
mask_feats[i, :] = train_tuple.torchdset.random_feat()
# -> rest 10% randomly keep current feat
# Need to predict this feat
feat_mask[i] = 1.
return mask_feats, feat_mask
def convert_example_to_features(example: InputExample, max_seq_length, tokenizer)->InputFeatures:
"""
Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with
IDs, LM labels, input_mask, CLS and SEP tokens etc.
:param example: InputExample, containing sentence input as strings and is_next label
:param max_seq_length: int, maximum length of sequence.
:param tokenizer: Tokenizer
:return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training)
"""
tokens = tokenizer.tokenize(" " + " ".join(str(example.sent).split()))
# Account for <s> and </s> </s> with "- 3"
if len(tokens) > max_seq_length - 3:
tokens = tokens[:(max_seq_length - 3)]
# We are not performing pretraining on the very first id, as the original roberta was pretrained with cased words & no space in front
# We also use a huggingface implementation of masking here (It doesnt make any big difference in the loss landscape though)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
first_id = input_ids[0]
if len(input_ids) < 2:
input_ids, masked_label = [], []
else:
masked_tokens, masked_label = mask_tokens(torch.tensor([input_ids[1:]]), tokenizer)
input_ids, masked_label = masked_tokens.tolist()[0], masked_label.tolist()[0]
input_ids = [0] + [first_id] + input_ids + [2] + [2]
# Mask & Segment Word
lm_label_ids = ([-1] + [-1] + masked_label + [-1])
input_mask = [1] * len(input_ids)
segment_ids = [0] * len(input_ids)
# As VisualBERT concats Text & Visual Input, lm label ids must be even longer!
num_features = 100 # 100 features for Hateful Memes!
while len(lm_label_ids) < (max_seq_length + num_features):
lm_label_ids.append(-1)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(1)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(lm_label_ids) == max_seq_length + num_features
feat, boxes = example.visual_feats
obj_labels, obj_confs = example.obj_labels
attr_labels, attr_confs = example.attr_labels
# Mask Image Features:
masked_feat, feat_mask = random_feat(feat)
ans = -1
features = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
lm_label_ids=lm_label_ids,
visual_feats=(masked_feat, boxes),
obj_labels={
'obj': (obj_labels, obj_confs),
'attr': (attr_labels, attr_confs),
'feat': (feat, feat_mask),
},
is_matched=example.is_matched,
ans=ans,
vl_label=example.vl_label
)
return features
LOSSES_NAME = ('Mask_LM', 'VL', 'Matched', 'Feat', 'Obj', 'QA')
## I.e. : Mask_LM = Masking words;
# Obj, Feat = Masking objs (ids), feats (pixels?),
# Matched = Sen & Img belong together?
class LXMERT:
def __init__(self, max_seq_length):
super().__init__()
self.max_seq_length = max_seq_length
self.tokenizer = AutoTokenizer.from_pretrained(args.tr, do_lower_case=True)
# Build model
self.model = RobertaVPretraining(
args.tr,
visual_losses=args.visual_losses,
task_matched=args.task_matched,
task_obj_predict=args.task_obj_predict,
task_hm=args.task_hm
)
# Update config to finetune token type embeddings for Roberta
if self.model.roberta.config.type_vocab_size == 1:
print("Type Vocab Size is 1. Adjusting...")
self.model.roberta.config.type_vocab_size = 2
# Create a new Embeddings layer, with 2 possible segments IDs instead of 1
self.model.roberta.embeddings.token_type_embeddings = nn.Embedding(2, self.model.roberta.config.hidden_size)
# Initialize it
self.model.roberta.embeddings.token_type_embeddings.weight.data.normal_(mean=0.0, std=self.model.roberta.config.initializer_range)
# Weight initialization and loading
if args.from_scratch:
print("Train from Scratch: re-initialize all BERT weights.")
self.model.apply(self.model.init_bert_weights)
if args.loadfin is not None:
self.load(args.loadfin)
if args.loadpre is not None:
self.loadpre(args.loadpre)
# GPU Options
self.model = self.model.cuda()
if args.multiGPU:
self.model = nn.DataParallel(self.model)
def forward(self, examples):
train_features = [convert_example_to_features(example, self.max_seq_length, self.tokenizer)
for example in examples]
# language Inputs
input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long).cuda()
input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long).cuda()
segment_ids = None #torch.tensor([f.segment_ids for f in train_features], dtype=torch.long).cuda()
# Visual Inputs
feats = torch.from_numpy(np.stack([f.visual_feats[0] for f in train_features])).cuda()
pos = torch.from_numpy(np.stack([f.visual_feats[1] for f in train_features])).cuda()
# Language Prediction
lm_labels = torch.tensor([f.lm_label_ids for f in train_features], dtype=torch.long).cuda()
# Visual Prediction
if args.task_obj_predict:
obj_labels = {}
# Removed 'attr',
for key in ('obj', 'feat'):
visn_labels = torch.from_numpy(np.stack([f.obj_labels[key][0] for f in train_features])).cuda()
visn_mask = torch.from_numpy(np.stack([f.obj_labels[key][1] for f in train_features])).cuda()
assert visn_labels.size(0) == visn_mask.size(0) and visn_labels.size(1) == visn_mask.size(1)
obj_labels[key] = (visn_labels, visn_mask)
else:
obj_labels = None
# Joint Prediction
if args.task_matched:
torch.tensor([f.is_matched for f in train_features], dtype=torch.long).cuda()
else:
matched_labels = None
if args.task_qa:
ans = torch.from_numpy(np.stack([f.ans for f in train_features])).cuda()
# Label
if args.task_hm:
vl_label = torch.tensor([f.vl_label for f in train_features], dtype=torch.long).cuda()
else:
vl_label = None
"""
forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
visual_feats=None, pos=None, obj_labels=None, matched_label=None, ans=None):
"""
loss, losses, ans_logit = self.model(
input_ids, attention_mask=input_mask, visual_embeddings=feats, position_embeddings_visual=pos, masked_lm_labels=lm_labels,
matched_label=matched_labels, obj_labels=obj_labels, vl_label=vl_label
)
return loss, losses.detach().cpu(), ans_logit
def train_batch(self, optim, scheduler, batch, ups):
loss, losses, ans_logit = self.forward(batch)
if args.multiGPU:
loss = loss.mean()
losses = losses.mean(0)
# Account for grad accum.
loss /= args.acc
losses /= args.acc
loss.backward()
if (ups+1) % args.acc == 0:
nn.utils.clip_grad_norm_(self.model.parameters(), 1.)
optim.step()
scheduler.step()
optim.zero_grad()
return loss.item(), losses.cpu().numpy(), ans_logit
def valid_batch(self, batch):
with torch.no_grad():
loss, losses, ans_logit = self.forward(batch)
if args.multiGPU:
loss = loss.mean()
losses = losses.mean(0)
return loss.item(), losses.cpu().numpy(), ans_logit
def train(self, train_tuple: DataTuple, eval_tuple: DataTuple):
train_ld = train_tuple.loader
# Optimizer
batch_per_epoch = len(train_ld)
t_total = int(batch_per_epoch * args.epochs // args.acc)
warmup_ratio = 0.05
warmup_iters = int(t_total * warmup_ratio)
print("Batch per epoch: %d" % batch_per_epoch)
print("Total Iters: %d" % t_total)
print("Warm up Iters: %d" % warmup_iters)
optim = AdamW(self.model.parameters(), lr=args.lr)
scheduler = get_linear_schedule_with_warmup(optim, warmup_iters, t_total)
optim.zero_grad()
# Tracking updates for accumulation
ups = 0
# Train
best_eval_loss = 9595.
for epoch in range(args.epochs):
# Train
self.model.train()
total_loss = 0.
total_losses = 0.
uid2ans = {}
for batch in tqdm(train_ld, total=len(train_ld)):
loss, losses, logit = self.train_batch(optim, scheduler, batch, ups)
total_loss += loss
total_losses += losses
ups += 1
if args.task_qa:
score, label = logit.max(1)
for datum, l in zip(batch, label.cpu().numpy()):
uid = datum.uid
ans = train_tuple.dataset.answer_table.id2ans(l)
uid2ans[uid] = ans
print("The training loss for Epoch %d is %0.4f" % (epoch, total_loss / (batch_per_epoch * args.acc)))
losses_str = "The losses are "
# Somehow had to add [0] here, which is not in or repo
for name, loss in zip(LOSSES_NAME, total_losses[0]):
losses_str += "%s: %0.4f " % (name, loss / batch_per_epoch)
print(losses_str)
if eval_tuple is not None and args.task_hm:
self.evaluate(eval_tuple)
if args.task_qa:
train_tuple.evaluator.evaluate(uid2ans, pprint=True)
if epoch == 10:
self.save("Epoch%02d" % (epoch+1))
self.save("LAST")
def predict(self, eval_tuple: DataTuple, dump=None, out_csv=True):
self.model.eval()
dset, loader, evaluator = eval_tuple
quesid2ans = {}
quesid2prob = {}
for i, batch in enumerate(loader):
loss, losses, logit = self.valid_batch(batch)
# Note: LogSoftmax does not change order, hence there should be nothing wrong with taking it as our prediction
logit = self.logsoftmax(logit)
score = logit[:, 1]
_, predict = logit.max(1)
for qid, l in zip(ques_id, predict.cpu().numpy()):
quesid2ans[qid] = l
# Getting probas for Roc Auc
for qid, l in zip(ques_id, score.cpu().numpy()):
quesid2prob[qid] = l
return quesid2ans, quesid2prob
def evaluate(self, eval_tuple: DataTuple, dump=None):
"""Evaluate all data in data_tuple."""
quesid2ans, quesid2prob = self.predict(eval_tuple, dump=dump)
acc = eval_tuple.evaluator.evaluate(quesid2ans)
roc_auc = eval_tuple.evaluator.roc_auc(quesid2prob)
print("SCORES ARE: ", acc, roc_auc)
def save(self, name):
torch.save(self.model.state_dict(),
os.path.join(args.output, "%s_RV.pth" % name))
def load(self, path):
print("Load BERT extractor from %s" % path)
state_dict = torch.load("%s" % path)
self.model.load_state_dict(state_dict)
def loadpre(self, path):
print("Load model from %s" % path)
state_dict = torch.load("%s" % path)
# Do not load any answer head
for key in list(state_dict.keys()):
if 'answer' in key:
state_dict.pop(key)
# Change Multi GPU to single GPU
new_state_dict = {}
for key, value in state_dict.items():
# Skip TTIs
if "embeddings.token_type_embeddings.weight" in key:
continue
if key.startswith("model.bert."):
print("SAVING {} as {}.".format(key, key[6:])) # Save as bert. ...
new_state_dict[key[6:]] = value
elif key.startswith("module."):
new_state_dict[key[len("module."):]] = value
else:
new_state_dict[key] = value
state_dict = new_state_dict
load_keys = set(state_dict.keys())
model_keys = set(self.model.state_dict().keys())
print()
print("Keys in loaded but not in model:")
for key in sorted(load_keys.difference(model_keys)):
print(key)
print()
print("Keys in model but not in loaded:")
for key in sorted(model_keys.difference(load_keys)):
print(key)
print()
self.model.load_state_dict(state_dict, strict=False)
if __name__ == "__main__":
lxmert = LXMERT(max_seq_length=128)
lxmert.train(train_tuple, valid_tuple)