-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate-multiple-alphas-file.py
executable file
·91 lines (78 loc) · 3.41 KB
/
generate-multiple-alphas-file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python3
import argparse
import csv
import json
import numpy as np
import itertools
from math import radians, cos, sin, asin, sqrt
parser = argparse.ArgumentParser(description="generate eval-json")
parser.add_argument("-i", "--input", type=str, help="input fmi-file", required=True)
parser.add_argument("-o", "--output", type=str, help="output json-file", required=True)
parser.add_argument("-st", "--start-lat", type=float, help="start latitude", required=True)
parser.add_argument("-sn", "--start-lng", type=float, help="start longitude", required=True)
parser.add_argument("-et", "--end-lat", type=float, help="end latitude", required=True)
parser.add_argument("-en", "--end-lng", type=float, help="end longitude", required=True)
parser.add_argument("-w", "--walk", type=float, help="step size", required=True)
args = parser.parse_args()
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * asin(sqrt(a))
r = 6371 # Radius of earth in kilometers. Use 3956 for miles
return c * r
def convert(o):
if isinstance(o, np.int64):
return int(o)
raise TypeError
elif isinstance(o, np.ndarray):
return o.tolist()
raise TypeError
def main(input, output, start_lat, start_lon, end_lat, end_lon, walk):
nodes = list()
# read files
with open(input) as csvfile:
fmireader = csv.reader(csvfile, delimiter=' ')
tmp = next(fmireader)
while len(tmp) == 0 or tmp[0].startswith("#"):
tmp = next(fmireader)
amount_dims = int(tmp[0])
amount_nodes_fmi = int(next(fmireader)[0])
next(fmireader) # amount_edges
for i in range(amount_nodes_fmi):
tmp = next(fmireader)
nodes.append({"latitude": float(tmp[2]), "longitude": float(tmp[3])})
# find closes points
start, end = 0, 0
start_dist, end_dist = 999_999, 999_999
for index, node in enumerate(nodes):
s_dist = haversine(start_lon, start_lat, node["longitude"], node["latitude"])
if s_dist < start_dist:
start = index
start_dist = s_dist
e_dist = haversine(end_lon, end_lat, node["longitude"], node["latitude"])
if e_dist < end_dist:
end = index
end_dist = e_dist
# generate range of the alphas
alpha_range = np.arange(0.0, 1.0000000000001, walk)
# generating all possible combinations
alphas = [p for p in itertools.product(alpha_range, repeat=amount_dims)]
# only keep the ones suming up to one
filtered_alphas = [alpha for alpha in alphas if abs(sum(alpha) - 1.0) < 0.000001]
# export data to json
data = list()
for index, alpha in enumerate(filtered_alphas):
data.append({"id": index, "orig_start_id": start, "orig_end_id": end,
"start_pos": nodes[start], "end_pos": nodes[end], "alpha": alpha})
with open(output, 'w') as outfile:
json.dump(data, outfile, ensure_ascii=False, indent=4, default=convert)
if __name__ == '__main__':
main(args.input, args.output, args.start_lat, args.start_lng, args.end_lat, args.end_lng, args.walk)