forked from mattjj/pyhsmm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmm.py
71 lines (53 loc) · 2.11 KB
/
hmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from __future__ import division
import numpy as np
np.seterr(divide='ignore') # these warnings are usually harmless for this code
from matplotlib import pyplot as plt
import matplotlib
import os
matplotlib.rcParams['font.size'] = 8
import pyhsmm
from pyhsmm.util.text import progprint_xrange
print \
'''
This demo shows how HDP-HMMs can fail when the underlying data has state
persistence without some kind of temporal regularization (in the form of a
sticky bias or duration modeling): without setting the number of states to be
the correct number a priori, lots of extra states can be intsantiated.
BUT the effect is much more relevant on real data (when the data doesn't exactly
fit the model). Maybe this demo should use multinomial emissions...
'''
###############
# load data #
###############
data = np.loadtxt(os.path.join(os.path.dirname(__file__),'example-data.txt'))[:2500]
#########################
# posterior inference #
#########################
# Set the weak limit truncation level
Nmax = 25
# and some hyperparameters
obs_dim = data.shape[1]
obs_hypparams = {'mu_0':np.zeros(obs_dim),
'sigma_0':np.eye(obs_dim),
'kappa_0':0.25,
'nu_0':obs_dim+2}
### HDP-HMM without the sticky bias
obs_distns = [pyhsmm.distributions.Gaussian(**obs_hypparams) for state in xrange(Nmax)]
posteriormodel = pyhsmm.models.WeakLimitHDPHMM(alpha=6.,gamma=6.,init_state_concentration=1.,
obs_distns=obs_distns)
posteriormodel.add_data(data)
for idx in progprint_xrange(100):
posteriormodel.resample_model()
posteriormodel.plot()
plt.gcf().suptitle('HDP-HMM sampled model after 100 iterations')
### Sticky-HDP-HMM
obs_distns = [pyhsmm.distributions.Gaussian(**obs_hypparams) for state in xrange(Nmax)]
posteriormodel = pyhsmm.models.WeakLimitStickyHDPHMM(
kappa=50.,alpha=6.,gamma=6.,init_state_concentration=1.,
obs_distns=obs_distns)
posteriormodel.add_data(data)
for idx in progprint_xrange(100):
posteriormodel.resample_model()
posteriormodel.plot()
plt.gcf().suptitle('Sticky HDP-HMM sampled model after 100 iterations')
plt.show()