forked from hal3/vowpal_wabbit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautolink.cc
51 lines (42 loc) · 1.31 KB
/
autolink.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include "reductions.h"
const int autoconstant = 524267083;
struct autolink {
uint32_t d; // degree of the polynomial
uint32_t stride_shift;
};
template <bool is_learn>
void predict_or_learn(autolink& b, LEARNER::base_learner& base, example& ec)
{
base.predict(ec);
float base_pred = ec.pred.scalar;
// add features of label
ec.indices.push_back(autolink_namespace);
float sum_sq = 0;
for (size_t i = 0; i < b.d; i++)
if (base_pred != 0.)
{
feature f = { base_pred, (uint32_t) (autoconstant + (i << b.stride_shift)) };
ec.atomics[autolink_namespace].push_back(f);
sum_sq += base_pred*base_pred;
base_pred *= ec.pred.scalar;
}
ec.total_sum_feat_sq += sum_sq;
if (is_learn)
base.learn(ec);
else
base.predict(ec);
ec.atomics[autolink_namespace].erase();
ec.indices.pop();
ec.total_sum_feat_sq -= sum_sq;
}
LEARNER::base_learner* autolink_setup(vw& all)
{
if (missing_option<size_t, true>(all, "autolink", "create link function with polynomial d"))
return nullptr;
autolink& data = calloc_or_die<autolink>();
data.d = (uint32_t)all.vm["autolink"].as<size_t>();
data.stride_shift = all.reg.stride_shift;
LEARNER::learner<autolink>& ret =
init_learner(&data, setup_base(all), predict_or_learn<true>, predict_or_learn<false>);
return make_base(ret);
}