-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualize.py
executable file
·55 lines (43 loc) · 1.84 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import open3d as o3d
import torch
from torch.cuda.amp import autocast
from tqdm import tqdm
from nets.orthanet import OrthaNet as ONet
from utils import io
def visualize(cfg):
""" Visualize trained network """
# Load model
onet_dict = torch.load(os.path.join(cfg.path_output, 'onet.pt'))
onet = ONet(cfg.latent_size, lods=cfg.lods, feat_combine=cfg.latent_combine,
num_layers=cfg.num_layers, hidden_dim=cfg.hidden_dim, decoder_layers=cfg.decoder_layers).to(cfg.device)
onet.load_state_dict(onet_dict['model'], strict=False)
onet.eval()
# Latent vectors
feats = onet_dict['feats']
obj_ids = feats['idx']
obj_feats = feats['embedding'].to(cfg.device)
# Loop over latent vectors
with torch.no_grad():
with autocast():
pbar = tqdm(enumerate(obj_ids))
for i, idx in pbar:
# Get output
pred_lod = onet.get_object(obj_feats(torch.tensor(i).to(cfg.device)))
# Project points onto the surface
pred_pcd = pred_lod[-1]['xyz'] - (pred_lod[-1]['sdf'] * pred_lod[-1]['nrm'])
pred_nrm = pred_lod[-1]['nrm']
# Visualize using Open3D
pcd_sdf_vis = o3d.geometry.PointCloud()
pcd_sdf_vis.points = o3d.utility.Vector3dVector(pred_pcd[0].detach().cpu())
pcd_sdf_vis.normals = o3d.utility.Vector3dVector(pred_nrm[0].detach().cpu())
pcd_sdf_vis.colors = o3d.utility.Vector3dVector(((pred_nrm[0] + 1) / 2).detach().cpu())
o3d.visualization.draw_geometries([pcd_sdf_vis], width=600, height=600,
window_name='Object: {}'.format(idx))
def main():
# Parse input
args = io.parse_input()
# Visualize
visualize(args)
if __name__ == '__main__':
main()