forked from CakeML/cakeml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfpOptScript.sml
240 lines (216 loc) · 7.73 KB
/
fpOptScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
(*
Model of floating-point optimizations
*)
open HolKernel Parse boolLib bossLib;
open libTheory fpValTreeTheory;
val _ = numLib.prefer_num();
val _ = new_theory "fpOpt"
(*
Definition of the fp_pattern language for Icing optimizations
*)
Datatype:
fp_pat =
Word word64
| PatVar num
| Unop fp_uop fp_pat
| Binop fp_bop fp_pat fp_pat
| Terop fp_top fp_pat fp_pat fp_pat
| Cmp fp_cmp fp_pat fp_pat
| Optimise fp_opt fp_pat
End
(* Substitutions are maps (paired lists) from numbers to 'a *)
Type subst = ``: (num # 'v) list``
Definition substLookup_def:
substLookup [] n= NONE ∧
substLookup ((m, v)::s) n = (if (m = n) then SOME v else substLookup s n)
End
Definition substUpdate_def:
substUpdate n v1 s=
(case s of
[] => NONE
| (s1::sN) =>
(case s1 of
(m,v2) =>
if (n = m) then SOME ((n,v1)::sN)
else
(case (substUpdate n v1 sN) of
NONE => NONE
| SOME sNew => SOME ((m,v2)::sNew))))
End
Definition substAdd_def:
substAdd n v s =
(case (substUpdate n v s) of
SOME sNew => sNew
| NONE => (n,v)::s)
End
(* Matching a fp_pattern with the top-level of a value tree,
if a matching exists an option with a substitution is returned.
The matcher takes an additional substituion as argument to make sure
that we do not double match a fp_pattern to different expressions
*)
Definition matchWordTree_def:
matchWordTree (Word w1) (Fp_const w2) s =
(if (w1 = w2) then SOME s else NONE) ∧
matchWordTree (PatVar n) v s =
(case substLookup s n of
SOME v1 => if v1 = v then SOME s else NONE
| NONE => SOME (substAdd n v s)) ∧
matchWordTree (Unop op1 p) (Fp_uop op2 v) s =
(if (op1 = op2) then matchWordTree p v s
else NONE) ∧
matchWordTree (Binop b1 p1 p2) (Fp_bop b2 v1 v2) s =
(if (b1 = b2) then
(case matchWordTree p1 v1 s of
NONE => NONE
| SOME s1 => matchWordTree p2 v2 s1
)
else NONE) ∧
matchWordTree (Terop t1 p1 p2 p3) (Fp_top t2 v1 v2 v3) s =
(if (t1 = t2) then
(case matchWordTree p1 v1 s of
NONE => NONE
| SOME s1 =>
(case matchWordTree p2 v2 s1 of
NONE => NONE
| SOME s2 => matchWordTree p3 v3 s2))
else NONE) ∧
matchWordTree (Optimise fp_opt1 p) (Fp_wopt fp_opt2 v) s =
(if fp_opt1 = fp_opt2 then matchWordTree p v s else NONE) ∧
matchWordTree _ _ s = NONE
End
Definition matchBoolTree_def:
matchBoolTree (Optimise fp_opt1 p) (Fp_bopt fp_opt2 v) s =
(if fp_opt1 = fp_opt2 then (matchBoolTree p v s) else NONE) ∧
matchBoolTree (Cmp cmp1 p1 p2) (Fp_cmp cmp2 v1 v2) s =
(if (cmp1 = cmp2) then
(case matchWordTree p1 v1 s of
NONE => NONE
| SOME s1 => matchWordTree p2 v2 s1)
else NONE) ∧
matchBoolTree _ _ _ = NONE
End
(* Instantiate a given fp_pattern with a substitution into a value tree *)
Definition instWordTree_def:
instWordTree (Word w) s = (SOME (Fp_const w)) ∧
instWordTree (PatVar n) s = (substLookup s n) ∧
instWordTree (Unop u p) s =
(case instWordTree p s of
NONE => NONE
| SOME v => SOME (Fp_uop u v)) ∧
instWordTree (Binop op p1 p2) s =
(case (instWordTree p1 s, instWordTree p2 s) of
(SOME v1, SOME v2) => SOME (Fp_bop op v1 v2)
| (_, _) => NONE) ∧
instWordTree (Terop op p1 p2 p3) s =
(case (instWordTree p1 s, instWordTree p2 s , instWordTree p3 s) of
(SOME v1, SOME v2, SOME v3) => SOME (Fp_top op v1 v2 v3)
| (_, _, _) => NONE) ∧
instWordTree (Optimise fp_opt p) s =
(case instWordTree p s of
NONE => NONE
| SOME v => SOME (Fp_wopt fp_opt v)) ∧
instWordTree _ _= NONE
End
Definition instBoolTree_def:
instBoolTree (Optimise fp_opt p) s =
(case instBoolTree p s of
NONE => NONE
| SOME v => SOME (Fp_bopt fp_opt v)) ∧
instBoolTree (Cmp cmp p1 p2) s =
(case (instWordTree p1 s, instWordTree p2 s) of
(SOME v1, SOME v2) => SOME (Fp_cmp cmp v1 v2)
| (_, _) => NONE) ∧
instBoolTree _ _ = NONE
End
(* Define a floating-point rewrite as a pair of a source and target fp_pattern *)
Type fp_rw = ``: (fp_pat # fp_pat)``
(** Rewriting on value trees is done in the semantics by picking a fp_path
that walks down the value tree structure and then applies the rewrite in place
if it matches **)
(* Datatype for fp_paths into a value tree. Here is the leaf node meaning that the
rewrite should be applied *)
Datatype:
fp_path = Left fp_path | Right fp_path | Center fp_path | Here
End
Definition option_map_def:
option_map f NONE = NONE ∧
option_map f (SOME res) = SOME (f res)
End
(* Function rwFp_pathValTree b rw p v recurses through value tree v using fp_path p
until p = Here or no further recursion is possible because of a mismatch.
In case of a mismatch the function simply returns Nothing. *)
Definition rwFp_pathWordTree_def:
rwFp_pathWordTree rw Here v=
(let (lhs, rhs) = rw in
(case matchWordTree lhs v [] of
NONE => NONE
| SOME s => instWordTree rhs s)) ∧
rwFp_pathWordTree rw (Left p) (Fp_bop op v1 v2) =
(option_map (\ v1 . Fp_bop op v1 v2) (rwFp_pathWordTree rw p v1)) ∧
rwFp_pathWordTree rw (Right p) (Fp_bop op v1 v2) =
(option_map (\ v2 . Fp_bop op v1 v2) (rwFp_pathWordTree rw p v2)) ∧
rwFp_pathWordTree rw (Center p) (Fp_uop op v1) =
(option_map (\ v . Fp_uop op v) (rwFp_pathWordTree rw p v1)) ∧
rwFp_pathWordTree rw (Left p) (Fp_top op v1 v2 v3) =
(option_map (\ v1 . Fp_top op v1 v2 v3) (rwFp_pathWordTree rw p v1)) ∧
rwFp_pathWordTree rw (Center p) (Fp_top op v1 v2 v3) =
(option_map (\ v2 . Fp_top op v1 v2 v3) (rwFp_pathWordTree rw p v2)) ∧
rwFp_pathWordTree rw (Right p) (Fp_top op v1 v2 v3) =
(option_map (\ v3 . Fp_top op v1 v2 v3) (rwFp_pathWordTree rw p v3)) ∧
rwFp_pathWordTree rw (Center p) (Fp_wopt fp_opt v) =
(option_map (\ v . Fp_wopt fp_opt v) (rwFp_pathWordTree rw p v)) ∧
rwFp_pathWordTree _ _ _= NONE
End
Definition rwFp_pathBoolTree_def:
rwFp_pathBoolTree rw Here v =
(let (lhs, rhs) = rw in
(case matchBoolTree lhs v [] of
NONE => NONE
| SOME s => instBoolTree rhs s)) ∧
rwFp_pathBoolTree rw (Center p) (Fp_bopt fp_opt v) =
(option_map (\ v . Fp_bopt fp_opt v) (rwFp_pathBoolTree rw p v)) ∧
rwFp_pathBoolTree rw (Left p) (Fp_cmp cmp v1 v2) =
(option_map (\ v1 . Fp_cmp cmp v1 v2) (rwFp_pathWordTree rw p v1)) ∧
rwFp_pathBoolTree rw (Right p) (Fp_cmp cmp v1 v2) =
(option_map (\ v2 . Fp_cmp cmp v1 v2) (rwFp_pathWordTree rw p v2)) ∧
rwFp_pathBoolTree _ _ _= NONE
End
(* Datatype holding a single rewrite application in the form of a fp_path into the
value tree and a number giving the index of the rewrite to be used *)
Datatype:
rewrite_app = RewriteApp fp_path num
End
Definition nth_def:
nth [] n= NONE ∧
nth (x::xs) n =
(if (n =( 0 : num)) then NONE
else if (n =( 1 : num)) then SOME x
else nth xs (n -( 1 : num)))
End
(* rwAllValTree rwApps canOpt rws v applies all the rewrite_app's in rwApps to
value tree v using rwFp_pathValTree *)
Definition rwAllWordTree_def:
rwAllWordTree [] rws v = (SOME v) ∧
rwAllWordTree ((RewriteApp p n)::rs) rws v =
(case nth rws n of
NONE => NONE
| SOME rw =>
(case rwFp_pathWordTree rw p v of
NONE => NONE
| SOME vNew => rwAllWordTree rs rws vNew))
End
Definition rwAllBoolTree_def:
rwAllBoolTree [] rws v = (SOME v) ∧
rwAllBoolTree ((RewriteApp p n)::rs) rws v =
(case nth rws n of
NONE => NONE
| SOME rw =>
(case rwFp_pathBoolTree rw p v of
NONE => NONE
| SOME vNew => rwAllBoolTree rs rws vNew))
End
(*val no_fp_opts : nat -> list rewrite_app*)
Definition no_fp_opts_def:
no_fp_opts (n:num) = []
End
val _ = export_theory()