Skip to content

Commit 39758c3

Browse files
committed
add model2
1 parent 9b5b100 commit 39758c3

File tree

1 file changed

+51
-0
lines changed

1 file changed

+51
-0
lines changed
Lines changed: 51 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,51 @@
1+
import numpy as np
2+
from sklearn import neighbors
3+
4+
# fileName: 文件名字
5+
# isTest: =True为测试数据 label直接设0
6+
def readDataSet(fileName, isTest):
7+
fr = open(fileName,encoding='utf-8')
8+
lines = fr.readlines()
9+
10+
numLabels = len(lines)
11+
labels = np.zeros(numLabels)
12+
dateSet = np.zeros([numLabels,54],int)
13+
14+
# 逐行读取数据到dataSet,labels
15+
# 总共55列,前54列是样本特征,最后一列是样本类别(label)
16+
for i in range(numLabels):
17+
line = lines[i]
18+
label = 0
19+
if isTest:
20+
label = 0
21+
else:
22+
label = line.split(' ')[54]
23+
labels[i] = label
24+
25+
dates = np.zeros(54)
26+
for j in range(53):
27+
dates[j] = line.split(' ')[j]
28+
dateSet[i] = dates
29+
30+
fr.close()
31+
return dateSet,labels
32+
33+
34+
# read dataSet
35+
train_dataSet,train_labels = readDataSet('data_train.txt', False)
36+
37+
38+
knn = neighbors.KNeighborsClassifier(algorithm='kd_tree', n_neighbors=3)
39+
print(knn)
40+
knn.fit(train_dataSet,train_labels)
41+
42+
# read test_dataSet
43+
test_dataSet,test_labels = readDataSet('data_test.txt', True)
44+
res = knn.predict(test_dataSet)
45+
46+
# 输出预测结果,保存到model_1.txt
47+
mf = open('model_2.txt','w')
48+
49+
for i in range(len(res)):
50+
mf.write(str(res[i]) + '\n')
51+
mf.close()

0 commit comments

Comments
 (0)