forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
74 lines (60 loc) · 2.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow.compat.v1 as tf
from axial import config_imagenet32
from axial import config_imagenet64
from axial import datasets
from axial import models
from axial import worker_util
FLAGS = flags.FLAGS
flags.DEFINE_string('master', None, '')
flags.DEFINE_string('logdir', None, '')
flags.DEFINE_integer('seed', 0, '')
flags.DEFINE_string('config', None, 'imagenet32 or imagenet64')
flags.mark_flag_as_required('logdir')
flags.mark_flag_as_required('config')
def main(_):
if FLAGS.config == 'imagenet32':
config = config_imagenet32.get_config()
elif FLAGS.config == 'imagenet64':
config = config_imagenet64.get_config()
else:
raise ValueError(config)
logging.info('config: {}'.format(config))
# Seeding
tf.set_random_seed(FLAGS.seed)
np.random.seed(FLAGS.seed)
# Model
def model_constructor():
return getattr(models, config.model_name)(config.model_config)
# Dataset
dataset = datasets.get_dataset(config.dataset_name,
**config.dataset_config.values())
worker_util.run_eval(
model_constructor=model_constructor,
logdir=FLAGS.logdir,
total_bs=config.eval_total_bs,
master=FLAGS.master,
input_fn=dataset.eval_input_fn,
dataset_size=dataset.get_size(is_train=False))
if __name__ == '__main__':
app.run(main)