forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
327 lines (270 loc) · 11.3 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains all data generating code for datasets used in the script."""
from __future__ import division
import os
import tempfile
import time
import numpy as np
from tensorflow.compat.v1 import gfile
from tensorflow.compat.v1.keras import backend as K
from tensorflow.compat.v1.keras.datasets import mnist
from tensorflow.compat.v1.keras.models import model_from_json
from clustering_normalized_cuts import pairs
_IGNORE_SSL_ERROR = True # Don't verify SSL certs.
def get_data(params):
"""preprocesses all data.
Args:
params: all parameters.
Returns:
A nested dictionary nested dict with the following keys:
the permutations (if any) used to shuffle the training and validation sets
'p_train' - p_train
'p_val' - p_val
the data used for CNC
'cnc'
'train_and_test' - (x_train, y_train, x_val, y_val,
x_test, y_test)
'train_unlabeled_and_labeled' - (x_train_unlabeled, y_train_unlabeled,
x_train_labeled, y_train_labeled)
'val_unlabeled_and_labeled' - (x_val_unlabeled, y_val_unlabeled,
x_val_labeled, y_val_labeled)
the data used for siamese net, if the architecture uses the siamese net
'siamese'
'train_and_test' - (pairs_train, dist_train, pairs_val,
dist_val)
'train_unlabeled_and_labeled' - (pairs_train_unlabeled,
dist_train_unlabeled, pairs_train_labeled, dist_train_labeled)
'val_unlabeled_and_labeled' - (pairs_val_unlabeled,
dist_val_unlabeled, pairs_val_labeled, dist_val_labeled)
"""
ret = {}
# get data
x_train, x_test, y_train, y_test = load_data(params)
ret['cnc'] = {}
if params.get('use_all_data'):
x_train = np.concatenate((x_train, x_test), axis=0)
y_train = np.concatenate((y_train, y_test), axis=0)
x_test = np.zeros((0,) + x_train.shape[1:])
y_test = np.zeros((0,))
# split x training, validation, and test subsets
if 'val_set_fraction' not in params:
train_val_split = (.9, .1)
elif params['val_set_fraction'] > 0 and params['val_set_fraction'] <= 1:
train_val_split = (1 - params['val_set_fraction'],
params['val_set_fraction'])
else:
raise ValueError('val_set_fraction is invalid! must be in range (0, 1]')
# shuffle training and test data separately into themselves and concatenate
p = np.concatenate([
np.random.permutation(len(x_train)),
len(x_train) + np.random.permutation(len(x_test))
],
axis=0)
x_train, y_train, p_train, x_val, y_val, p_val = split_data(
x_train, y_train, train_val_split, permute=p[:len(x_train)])
# split training and validation subset into its supervised and unsupervised
if params.get('train_labeled_fraction'):
train_split = (1 - params['train_labeled_fraction'],
params['train_labeled_fraction'])
else:
train_split = (1, 0)
x_train_unlabeled, y_train_unlabeled, _, x_train_labeled, y_train_labeled, _ = split_data(
x_train, y_train, train_split)
if params.get('val_labeled_fraction'):
val_split = (1 - params['val_labeled_fraction'],
params['val_labeled_fraction'])
else:
val_split = (1, 0)
x_val_unlabeled, y_val_unlabeled, _, x_val_labeled, y_val_labeled, _ = split_data(
x_val, y_val, val_split)
# embed data in code space, if necessary
all_data = [
x_train, x_val, x_test, x_train_unlabeled, x_train_labeled,
x_val_unlabeled, x_val_labeled
]
if params.get('use_code_space'):
for i, d in enumerate(all_data):
all_data[i] = embed_data(d, dset=params['dset'], path=params['main_path'])
else:
# otherwise just flatten it
for i, d in enumerate(all_data):
all_data[i] = all_data[i].reshape((-1, np.prod(all_data[i].shape[1:])))
(x_train, x_val, x_test, x_train_unlabeled, x_train_labeled, x_val_unlabeled,
x_val_labeled) = all_data
# collect everything into a dictionary
ret['cnc']['train_and_test'] = (x_train, y_train, x_val, y_val, x_test,
y_test)
ret['cnc']['train_unlabeled_and_labeled'] = (x_train_unlabeled,
y_train_unlabeled,
x_train_labeled, y_train_labeled)
ret['cnc']['val_unlabeled_and_labeled'] = (x_val_unlabeled, y_val_unlabeled,
x_val_labeled, y_val_labeled)
ret['p_train'] = p_train
ret['p_val'] = p_val
# get siamese data if necessary
if 'siamese' in params['affinity']:
ret['siamese'] = {}
pairs_train_unlabeled, dist_train_unlabeled = pairs.create_pairs_from_unlabeled_data(
x1=x_train_unlabeled,
p=None,
k=params.get('siam_k'),
tot_pairs=params.get('siamese_tot_pairs'),
pre_shuffled=True,
)
pairs_val_unlabeled, dist_val_unlabeled = pairs.create_pairs_from_unlabeled_data(
x1=x_val_unlabeled,
p=None,
k=params.get('siam_k'),
tot_pairs=params.get('siamese_tot_pairs'),
pre_shuffled=True,
)
# get pairs for labeled data
class_indices = [
np.where(y_train_labeled == i)[0] for i in range(params['n_clusters'])
]
pairs_train_labeled, dist_train_labeled = pairs.create_pairs_from_labeled_data(
x_train_labeled, class_indices)
class_indices = [
np.where(y_val_labeled == i)[0] for i in range(params['n_clusters'])
]
pairs_val_labeled, dist_val_labeled = pairs.create_pairs_from_labeled_data(
x_val_labeled, class_indices)
ret['siamese']['train_unlabeled_and_labeled'] = (pairs_train_unlabeled,
dist_train_unlabeled,
pairs_train_labeled,
dist_train_labeled)
ret['siamese']['val_unlabeled_and_labeled'] = (pairs_val_unlabeled,
dist_val_unlabeled,
pairs_val_labeled,
dist_val_labeled)
# combine labeled and unlabeled pairs for training the siamese
print('pairs_train_unlabeled shape', pairs_train_unlabeled.shape)
print('pairs_train_labeled shape', pairs_train_labeled.shape)
pairs_train = np.concatenate((pairs_train_unlabeled, pairs_train_labeled),
axis=0)
dist_train = np.concatenate((dist_train_unlabeled, dist_train_labeled),
axis=0)
pairs_val = np.concatenate((pairs_val_unlabeled, pairs_val_labeled), axis=0)
dist_val = np.concatenate((dist_val_unlabeled, dist_val_labeled), axis=0)
ret['siamese']['train_and_test'] = (pairs_train, dist_train, pairs_val,
dist_val)
return ret
def load_data(params):
"""reads the data specified in params."""
if params['dset'] == 'mnist':
x_train, x_test, y_train, y_test = get_mnist()
else:
raise ValueError('Dataset provided ({}) is invalid!'.format(params['dset']))
return x_train, x_test, y_train, y_test
def embed_data(x, dset, path):
"""embeds x into the code space using the autoencoder."""
if x:
return np.zeros(shape=(0, 10))
# load model and weights
json_path = os.path.join(path, 'ae_{}.json'.format(dset))
print('load model from json file:', json_path)
with gfile.Open(json_path) as f:
pt_ae = model_from_json(f.read())
weights_path = os.path.join(path, 'ae_{}_weights.h5'.format(dset))
print('load code spase from:', weights_path)
local_filename = weights_path.split('/')[-1]
tmp_filename = os.path.join(tempfile.gettempdir(),
str(int(time.time())) + '_' + local_filename)
gfile.Copy(weights_path, tmp_filename)
pt_ae.load_weights(tmp_filename)
gfile.Remove(tmp_filename)
print('***********************', x.shape)
x = x.reshape(-1, np.prod(x.shape[1:]))
print('***********************', x.shape)
get_embeddings = K.function([pt_ae.input], [pt_ae.layers[3].output])
get_reconstruction = K.function([pt_ae.layers[4].input], [pt_ae.output])
x_embedded = predict_with_k_fn(get_embeddings, x)[0]
x_recon = predict_with_k_fn(get_reconstruction, x_embedded)[0]
reconstruction_mse = np.mean(np.square(x - x_recon))
print(
'using pretrained embeddings; sanity check, total reconstruction error:',
np.mean(reconstruction_mse))
del pt_ae
return x_embedded
def predict_with_k_fn(k_fn, x, bs=1000):
"""evaluates x by k_fn(x), where k_fn is a Keras function, by batches of size 1000."""
if not isinstance(x, list):
x = [x]
num_outs = len(k_fn.outputs)
shape_y = k_fn.outputs[0].get_shape().as_list()
shape_y[0] = len(x[0])
y = [np.empty(shape_y) for _ in k_fn.outputs]
for i in range(int(x[0].shape[0] / bs + 1)):
x_batch = []
for x_ in x:
x_batch.append(x_[i * bs:(i + 1) * bs])
temp = k_fn(x_batch)
for j in range(num_outs):
y[j][i * bs:(i + 1) * bs] = temp[j]
return y
def split_data(x, y, split, permute=None):
"""Splits arrays x and y.
Args:
x: matrix of shape n x d1
y: matrix of shape n x d2
split: a list of floats of length 2 (e.g. [a1, a2]) where a, b > 0, a, b <
1, and a + b == 1
permute: a list or array of length n that can be used to shuffle x and y
identically before splitting it
Returns:
Splitted arrays of x and y
"""
n = len(x)
if permute is not None:
if not isinstance(permute, np.ndarray):
raise ValueError(
'Provided permute array should be an np.ndarray, not {}!'.format(
type(permute)))
if len(permute.shape) != 1:
raise ValueError(
'Provided permute array should be of dimension 1, not {}'.format(
len(permute.shape)))
if len(permute) != n:
raise ValueError(
'Provided permute should be the same length as x! (len(permute) = {}, n = {}'
.format(len(permute), n))
else:
permute = np.arange(n)
if np.sum(split) != 1:
raise ValueError('Split elements must sum to 1!')
ret_x_y_p = []
prev_idx = 0
for s in split:
idx = prev_idx + np.round(s * n).astype(np.int)
p_ = permute[prev_idx:idx]
x_ = x[p_]
y_ = y[p_]
prev_idx = idx
ret_x_y_p.append(x_)
ret_x_y_p.append(y_)
ret_x_y_p.append(p_)
return ret_x_y_p[0], ret_x_y_p[1], ret_x_y_p[2], ret_x_y_p[3], ret_x_y_p[
4], ret_x_y_p[5]
def get_mnist():
"""Returns the train and test splits of the MNIST digits dataset.
x_train and x_test are shaped into the tensorflow image data
shape and normalized to fit in the range [0, 1]
"""
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# reshape and standardize x arrays
x_train = np.expand_dims(x_train, -1) / 255.
x_test = np.expand_dims(x_test, -1) / 255.
return x_train, x_test, y_train, y_test