forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lamb_optimizer.py
159 lines (148 loc) · 6.31 KB
/
lamb_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions and classes related to optimization (weight updates)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import tensorflow.compat.v1 as tf
from mobilebert import distill_util
class LAMBOptimizer(tf.train.Optimizer):
"""LAMB (Layer-wise Adaptive Moments optimizer for Batch training)."""
# A new optimizer that includes correct L2 weight decay, adaptive
# element-wise updating, and layer-wise justification. The LAMB optimizer
# was proposed by Yang You, Jing Li, Jonathan Hseu, Xiaodan Song,
# James Demmel, and Cho-Jui Hsieh in a paper titled as Reducing BERT
# Pre-Training Time from 3 Days to 76 Minutes (arxiv.org/abs/1904.00962)
def __init__(self,
learning_rate,
weight_decay_rate=0.0,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=None,
exclude_from_layer_adaptation=None,
name="LAMBOptimizer",
use_layer_wise_warmup=False,
total_warmup_phases=0,
num_train_steps=0):
"""Constructs a LAMBOptimizer."""
super(LAMBOptimizer, self).__init__(False, name)
self.learning_rate = learning_rate
self.weight_decay_rate = weight_decay_rate
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.exclude_from_weight_decay = exclude_from_weight_decay
# exclude_from_layer_adaptation is set to exclude_from_weight_decay if the
# arg is None.
if exclude_from_layer_adaptation:
self.exclude_from_layer_adaptation = exclude_from_layer_adaptation
else:
self.exclude_from_layer_adaptation = exclude_from_weight_decay
self.use_layer_wise_warmup = use_layer_wise_warmup
if total_warmup_phases == 0:
self.steps_per_phase = 1
else:
self.steps_per_phase = num_train_steps // total_warmup_phases
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
"""See base class."""
assignments = []
background_lr = distill_util.get_background_lr(
global_step=global_step, steps_per_phase=self.steps_per_phase)
for (grad, param) in grads_and_vars:
if grad is None or param is None:
continue
param_name = self._get_variable_name(param.name)
m = tf.get_variable(
name=param_name + "/adam_m",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
v = tf.get_variable(
name=param_name + "/adam_v",
shape=param.shape.as_list(),
dtype=tf.float32,
trainable=False,
initializer=tf.zeros_initializer())
if self.use_layer_wise_warmup:
# Use model-specific name spaces to get layer id.
if param_name.startswith("bert/encoder/layer_"):
layer_id = int(param_name[len("bert/encoder/layer_"):].split("/",
1)[0])
layer_wise_lr = distill_util.layer_wise_learning_rate(
layer_id=layer_id,
steps_per_phase=self.steps_per_phase,
background_lr=background_lr)
layer_wise_gate = tf.where(
tf.math.greater(layer_wise_lr, 0.0), 1.0, 0.0)
else:
layer_wise_lr = 0.0
layer_wise_gate = 0.0
else:
layer_wise_lr = 1.0
layer_wise_gate = 1.0
# Standard Adam update.
next_m = layer_wise_gate * (
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
next_v = layer_wise_gate * (
tf.multiply(self.beta_2, v) +
tf.multiply(1.0 - self.beta_2, tf.square(grad)))
update = next_m / (tf.sqrt(next_v) + self.epsilon)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want ot decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if self._do_use_weight_decay(param_name):
update += layer_wise_gate * self.weight_decay_rate * param
ratio = 1.0
if self._do_layer_adaptation(param_name):
w_norm = tf.linalg.norm(param, ord=2)
g_norm = tf.linalg.norm(update, ord=2)
ratio = tf.where(tf.math.greater(w_norm, 0), tf.where(
tf.math.greater(g_norm, 0), (w_norm / g_norm), 1.0), 1.0)
update_with_lr = layer_wise_lr * ratio * self.learning_rate * update
next_param = param - update_with_lr
assignments.extend(
[param.assign(next_param),
m.assign(next_m),
v.assign(next_v)])
return tf.group(*assignments, name=name)
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if not self.weight_decay_rate:
return False
if self.exclude_from_weight_decay:
for r in self.exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
def _do_layer_adaptation(self, param_name):
"""Whether to do layer-wise learning rate adaptation for `param_name`."""
if self.exclude_from_layer_adaptation:
for r in self.exclude_from_layer_adaptation:
if re.search(r, param_name) is not None:
return False
return True
def _get_variable_name(self, param_name):
"""Get the variable name from the tensor name."""
m = re.match("^(.*):\\d+$", param_name)
if m is not None:
param_name = m.group(1)
return param_name