Skip to content

Latest commit

 

History

History

experience_replay

Revisiting Fundamentals of Experience Replay

This is the code for the paper Revisiting Fundamentals of Experience Replay by William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark Rowland and Will Dabney

Setup

All of the commands below are run from the parent google_research directory. Start a virtualenv with these commands:

virtualenv -p python3 .
source ./bin/activate

Then install necessary packages:

pip install -r experience_replay/requirements.txt

Running the Code

To train the agent execute,

python -m experience_replay.train \
  --gin_files=experience_replay/configs/dqn.gin \
  --schedule=continuous_train_and_eval \
  --base_dir=/tmp/experience_replay \
  --gin_bindings=experience_replay.replay_memory.prioritized_replay_buffer.WrappedPrioritizedReplayBuffer.replay_capacity=1000000 \
  --gin_bindings=ElephantDQNAgent.oldest_policy_in_buffer=250000 \
  --gin_bindings="ElephantDQNAgent.replay_scheme='uniform'" \
  --gin_bindings="atari_lib.create_atari_environment.game_name='Pong'"

These correspond to the default hyperparameters. The replay ratio may be adjusted by changing the oldest_policy_in_buffer.