-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathexamples.py
331 lines (275 loc) · 11.9 KB
/
examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from typing import List
import numpy
from onnx_tool.tensor import Tensor
def parse_and_edit():
import onnx_tool
modelpath = 'data/public/resnet50-v1-7.onnx'
m = onnx_tool.Model(modelpath)
g = m.graph
g.nodemap['resnetv17_batchnorm0_fwd'].set_attr('epsilon', 0.0001) # update the epsilon attribute value
g.nodemap['resnetv17_batchnorm0_fwd'].set_attr('lol', 'haha') # add new attributes of OP
raw = g.tensormap['resnetv17_batchnorm0_gamma'].numpy
g.tensormap['resnetv17_batchnorm0_gamma'].numpy = raw.astype(numpy.float16) # convert weight tensor to float16
g.skip_node('flatten_473') # remove_node will break the input and output tensor relation
m.save_model('resnet50-v1-7-edited.onnx')
def profile_model():
import onnx_tool
modelpath = 'data/public/resnet50-v1-7.onnx'
m = onnx_tool.Model(modelpath)
m.graph.shape_infer({'data': numpy.zeros((1, 3, 224, 224))}) # update tensor shapes with new input tensor
m.graph.profile()
m.graph.print_node_map() # console print
m.graph.print_node_map('resnet50-224.txt') # save file
m.graph.shape_infer({'data': numpy.zeros((1, 3, 256, 256))}) # update new resolution
m.graph.profile()
m.graph.print_node_map(exclude_ops=['Flatten', 'Relu', 'BatchNormalization']) # remove ops from the profile
m.graph.print_node_map('resnet50-256.csv') # csv file
m.save_model('resnet50_shapes_only.onnx',
shape_only=True) # only with weight tensor shapes and dynamic tensor shapes
# remove static weights, minimize storage space. 46KB
def weight_compression():
import onnx_tool
modelpath = 'data/public/resnet50-v1-7.onnx'
m = onnx_tool.Model(modelpath)
g = m.graph
def tofloat16():
for key in g.initials:
tensor = g.tensormap[key]
raw = tensor.numpy
tensor.numpy = raw.astype(numpy.float16)
m.save_model(m.modelname + '-fp16.onnx')
def quantize_sym():
from onnx_tool.quantization import graph_quantize
for key in g.initials:
graph_quantize(g, key, block=-1, type='sym', bits=8)
m.save_model(m.modelname + '-8bits-sym-default.onnx')
def quantize_asym():
from onnx_tool.quantization import graph_quantize
for key in g.initials:
graph_quantize(g, key, block=-1, type='asym', bits=8)
m.save_model(m.modelname + '-8bits-asym-default.onnx')
def quantize_sym_b32():
from onnx_tool.quantization import graph_quantize
for key in g.initials:
graph_quantize(g, key, block=32, type='sym', bits=8)
m.save_model(m.modelname + '-8bits-sym-b32.onnx')
def quantize_4bits_sym_b32():
from onnx_tool.quantization import graph_quantize
for key in g.initials:
graph_quantize(g, key, block=32, type='sym', bits=4)
m.save_model(m.modelname + '-4bits-sym-b32.onnx')
def simple_inference():
import onnx
import onnx_tool
modelpath = 'data/public/resnet50-v1-7.onnx'
tmppath = 'tmp.onnx'
m = onnx_tool.Model(modelpath)
dumptensors = ['resnetv17_stage1_conv3_fwd', 'resnetv17_stage1_conv3_fwd']
m.graph.add_dump_tensors(dumptensors)
m.save_model(tmppath)
# add two hidden tensors resnetv17_stage1_conv3_fwd resnetv17_stage1_conv3_fwd to 'resnet50_shapes.onnx' model's output tensors
def infer_with_ort(onnxfile, dumptensors, inputm):
import onnxruntime as ort
sess = ort.InferenceSession(onnxfile)
output = sess.run(dumptensors, inputm)
return output
inputm = {'data': numpy.ones((1, 3, 224, 224), dtype=numpy.float32)}
# outputs = infer_with_ort(tmppath,dumptensors,inputm) #with onnxruntime
# print(outputs[0])
outputs = m.graph.value_infer(inputm) # limited models, very slow, for debug purpose
print(m.graph.tensormap['resnetv17_stage1_conv3_fwd'].numpy)
def dynamic_input_shapes():
import numpy
import onnx_tool
from onnx_tool import create_ndarray_f32 # or use numpy.ones(shape,numpy.float32) is ok
modelpath = 'data/public/rvm_mobilenetv3_fp32.onnx'
m = onnx_tool.Model(modelpath)
inputs = {'src': create_ndarray_f32((1, 3, 1080, 1920)), 'r1i': create_ndarray_f32((1, 16, 135, 240)),
'r2i': create_ndarray_f32((1, 20, 68, 120)), 'r3i': create_ndarray_f32((1, 40, 34, 60)),
'r4i': create_ndarray_f32((1, 64, 17, 30)), 'downsample_ratio': numpy.array((0.25,), dtype=numpy.float32)}
m.graph.shape_infer(inputs)
m.graph.profile()
m.graph.print_node_map()
m.save_model('rvm_mobilenetv3_fp32_shapes.onnx')
def custom_layer_register():
import onnx_tool
from onnx_tool.node import _get_shape
from onnx_tool import create_ndarray_f32
@onnx_tool.NODE_REGISTRY.register()
class CropPluginNode(onnx_tool.Node):
# you can implement either shape_infer(faster) or value_infer.
# it's not necessary to implement both
def shape_infer(self, intensors: []):
# if you know how to calculate shapes of this op, you can implement shape_infer
return [_get_shape(intensors[1])]
# for upgrade of node_profilers.py, node_profilers.py's 'infer_shape' method should be placed
# as 'value_infer' method here, and do not create this class' 'shape_infer' method.
def value_infer(self, intensors: []):
# if you don't know how to calculate the shapes of this op, you can implement value_infer.
shape1 = intensors[1].shape
outtensor = intensors[0][:, :, :shape1[2], :shape1[3]]
return [outtensor]
def profile(self, intensors: [], outtensors: []):
macs = 0
# accumulate macs here
# this node has no calculation
return macs
onnx_tool.model_profile('./rrdb_new.onnx', {'input': create_ndarray_f32((1, 3, 335, 619))},
savenode='rrdb_new_nodemap.txt', saveshapesmodel='rrdb_new_shapes.onnx')
def bert_mha_fuse():
import onnx_tool
modelpath = 'data/public/bertsquad-12.onnx'
m = onnx_tool.Model(modelpath, mcfg={})
g = m.graph
g.graph_reorder_nodes()
in_tensor_names = ['bert/encoder/Reshape_1:0']
out_tensor_names = ['bert/encoder/layer_0/attention/output/dense/BiasAdd:0']
g.fuse_subgraph_iotensors(inputs=in_tensor_names, outputs=out_tensor_names, name_prefix='MHA',
nodeop='MHA', keep_attr=True)
g.graph_reorder_nodes()
m.save_model('bertsquad_mha.onnx')
def bert_mha_layernorm_fuse():
import onnx_tool
modelpath = 'data/public/bertsquad-12.onnx'
m = onnx_tool.Model(modelpath, mcfg={})
g = m.graph
g.graph_reorder_nodes()
in_tensor_names = ['bert/encoder/Reshape_1:0']
out_tensor_names = ['bert/encoder/layer_0/attention/output/dense/BiasAdd:0']
# automatically find all MHA nodes
g.fuse_subgraph_iotensors(inputs=in_tensor_names, outputs=out_tensor_names, name_prefix='MHA_0',
nodeop='MHA',
keep_attr=True)
in_tensor_names = ['bert/encoder/layer_0/attention/output/add:0']
out_tensor_names = ['bert/encoder/layer_0/attention/output/LayerNorm/batchnorm/add_1:0']
g.fuse_subgraph_iotensors(inputs=in_tensor_names, outputs=out_tensor_names, name_prefix='layernrom',
nodeop='LayerNormalization',
keep_attr=True)
g.graph_reorder_nodes()
m.save_model('bertsquad_mha_layernorm.onnx')
def computegraph_with_shapeengine():
import onnx_tool
import onnx
model_config = {
'name': 'data/public/BERT_quan95.onnx',
'dynamic_input': None,
'input_desc':
{
'input_ids': ('batch', 'seq'),
'attention_mask': ('batch', 'seq'),
'token_type_ids': ('batch', 'seq'),
},
'input_range':
{
'batch': (1, 4),
'seq': (16, 384)
}
}
m = onnx_tool.Model(model_config['name'])
g = m.graph
g.graph_reorder_nodes()
shape_engine = g.shape_regress(model_config['input_desc'], model_config['input_range'])
cg = g.get_compute_graph()
cg.save_model('compute_graph.onnx', rawmodel=m.mproto)
shape_engine.update_variable('batch', 3) # update batch size
shape_engine.update_variable('seq', 155) # update batch size
shape_engine.update_variables() # all shapes updated
print(shape_engine.get_tensorshape('1979')) # query tensor shapes
def serialization():
import onnx_tool
resnetinfo = {
'name': 'data/public/resnet18-v1-7.onnx',
'input_desc':
{
'data': [1, 3, 'h', 'w']
},
'input_range':
{
'h': (224, 299),
'w': (224, 299),
}
}
shape_engie, compute_graph = onnx_tool.model_shape_regress(resnetinfo['name'], resnetinfo['input_desc'],
resnetinfo['input_range'])
onnx_tool.serialize_graph(compute_graph, 'resnet18.cg')
onnx_tool.serialize_shape_engine(shape_engie, 'resnet18.se')
def detic_profile():
import onnx_tool
minfo = {
'name': 'data/public/model_custom_vocabulary.onnx',
'dynamic_input': None,
'mcfg': {
'constant_folding': False,
'verbose': True,
'if_fixed_branch': 'else',
'fixed_topk': 1000,
}
}
m = onnx_tool.Model(minfo['name'], minfo['mcfg'])
m.graph.graph_reorder_nodes()
m.graph.shape_infer(minfo['dynamic_input'])
m.graph.profile()
m.graph.print_node_map()
m.save_model('detic_shapes.onnx')
def ssd300_vgg16():
import onnx_tool
minfo = {
'name': 'data/public/ssd300_vgg16.onnx',
'dynamic_input': None,
'mcfg': {
'constant_folding': True,
'verbose': True,
'if_fixed_branch': 'else',
'fixed_topk': 0
}
}
m = onnx_tool.Model(minfo['name'], minfo['mcfg'])
m.graph.graph_reorder_nodes()
m.graph.shape_infer(minfo['dynamic_input'])
m.graph.profile()
m.graph.print_node_map()
m.save_model('ssd300_shapes.onnx')
def paraformer_profile():
import onnx_tool
from onnx_tool.node import NODE_REGISTRY
batch = 4
len = 100
hidden_size = 512
minfo = {
'name': './data/public/paraformer.onnx',
'dynamic_input': {
'speech': numpy.zeros((batch, len, 560), dtype=numpy.float32),
'speech_lengths': numpy.array((len,) * batch, dtype=numpy.int32)
},
'mcfg': {
'constant_folding': True,
'verbose': True,
'remove_dangling': True
}
}
@NODE_REGISTRY.register()
class SequenceMaskNode(onnx_tool.Node):
def shape_infer(self, intensors: List[Tensor], outtensors: List[Tensor]):
shape = intensors[0].get_shape()
outtensors[0].update_shape(shape + [len, ])
@NODE_REGISTRY.register()
class cif_searchNode(onnx_tool.Node):
def shape_infer(self, intensors: List[Tensor], outtensors: List[Tensor]):
outtensors[0].update_shape([batch, hidden_size])
m = onnx_tool.Model(minfo['name'], minfo['mcfg'])
m.graph.remove_dangling_nodes()
in_tensor_names = ['onnx::ReduceMax_7938']
out_tensor_names = ['tgt_mask']
m.graph.fuse_subgraph_iotensors(inputs=in_tensor_names, outputs=out_tensor_names, name_prefix='SequenceMask',
nodeop='SequenceMask', keep_attr=False)
m.graph.fuse_subgraph_iotensors(inputs=['onnx::Unsqueeze_7851'], outputs=['onnx::ReduceMean_7914'],
name_prefix='cif_search',
nodeop='cif_search', keep_attr=False)
m.graph.update_graph()
m.graph.graph_reorder_nodes()
# m.save_model('para_new.onnx')
m.graph.shape_infer(minfo['dynamic_input'])
m.graph.profile()
m.graph.print_node_map()
m.save_model('paraformer_shapes.onnx', shape_only=True)
paraformer_profile()