-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathllm_test.py
410 lines (365 loc) · 12.3 KB
/
llm_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from onnx_tool.llm import *
import tabulate
# Export the model with pytorch tensor names
# Not necessary to convert safetensors to ONNX format
def export_with_pytorch_weight_name():
bs = 1
seq_len = 1024
ids_shape = [bs, seq_len]
builder = Builder(**phi3_mini)
builder.build_graph(ids_shape, WeightMap)
for name in builder.graph.initials:
print(name)
builder.save_graph('phi3.onnx')
# each name response the same tensor in this file:
# https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/blob/main/model.safetensors.index.json
# Add one new model from hugging face
def add_hugging_face_model():
# get transformer config.json from hugging face
# copy https://huggingface.co/google/gemma-2-2b-it/blob/main/config.json here
gemma2b = {
"architectures": [
"Gemma2ForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"attn_logit_softcapping": 50.0,
"bos_token_id": 2,
"cache_implementation": "hybrid",
"eos_token_id": [
1,
107
],
"final_logit_softcapping": 30.0,
"head_dim": 256,
"hidden_act": "gelu_pytorch_tanh",
"hidden_activation": "gelu_pytorch_tanh",
"hidden_size": 2304,
"initializer_range": 0.02,
"intermediate_size": 9216,
"max_position_embeddings": 8192,
"model_type": "gemma2",
"num_attention_heads": 8,
"num_hidden_layers": 26,
"num_key_value_heads": 4,
"pad_token_id": 0,
"query_pre_attn_scalar": 256,
"rms_norm_eps": 1e-06,
"rope_theta": 10000.0,
"sliding_window": 4096,
"torch_dtype": "bfloat16",
"transformers_version": "4.42.4",
"use_cache": true,
"vocab_size": 256000
}
# ref the modeling file, add model arch config
# code: transformers/src/transformers/models/gemma2/modeling_gemma2.py
ArchMap['Gemma2ForCausalLM'] = {
"mlp_gate": True,
"norm_scale": True,
"norm_bias": False,
"fuse_qkv": False,
"qkv_bias": False,
"o_bias": False,
"mlp_bias": False,
"lm_head_bias": False,
'post_mlp_norm': True,
'post_attn_norm': True,
}
ActMap['gelu_pytorch_tanh'] = 'Gelu' # map new activation name to op_type
# Gemma2ForCausalLM redefines this name
WeightMap['mlp']['input_norm'] = 'pre_feedforward_layernorm'
bs = 1
seq_len = 2048
ids_shape = [bs, seq_len]
builder = Builder(**gemma2b)
builder.build_graph(ids_shape, WeightMap)
builder.save_graph('gemma2b.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
# build these hugging face models to ONNX file, and do profiling.
def build_onnx_models():
bs = 1
seq_len = 128
ids_shape = [bs, seq_len]
builder = Builder(**gptj_6b)
builder.build_graph(ids_shape)
builder.save_graph('gptj_6b.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
builder = Builder(**QWen_7B)
builder.build_graph(ids_shape)
builder.save_graph('QWen_7B.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
builder = Builder(**Qwen2_72B_Instruct)
builder.build_graph(ids_shape)
builder.save_graph('Qwen2_72B_Instruct.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
builder = Builder(**Llama3_8B)
builder.build_graph(ids_shape)
builder.save_graph('Llama3_8B.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
builder = Builder(**llama_31_70B)
builder.build_graph(ids_shape)
builder.save_graph('llama_31_70B.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
builder = Builder(**phi3_mini)
builder.build_graph(ids_shape)
builder.save_graph('phi3_mini.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
builder = Builder(**Phi_3_medium_4k_instruct)
builder.build_graph(ids_shape)
builder.save_graph('Phi_3_medium_4k_instruct.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
builder = Builder(**Phi_3_small_8k_instruct)
builder.build_graph(ids_shape)
builder.save_graph('Phi_3_small_8k_instruct.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
builder = Builder(**phi2)
builder.build_graph(ids_shape)
builder.save_graph('phi2.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
builder = Builder(**yi_34B)
builder.build_graph(ids_shape)
builder.save_graph('yi_34B.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
# generate summary table of these models
def profile_models():
bs = 1
seq_len = 1024
ids_shape = [bs, seq_len]
models = [gptj_6b, yi_34B, phi2, phi3_mini, Phi_3_small_8k_instruct, Phi_3_medium_4k_instruct, Llama3_8B,
llama_31_70B, QWen_7B, Qwen2_72B_Instruct]
# export model profile
header = ['model_type', 'MACs(G)', 'Parameters(G)', 'KV Cache(G)'] # number not memory bytes
rows = []
for model in models:
builder = Builder(**model)
builder.build_graph(ids_shape)
builder.graph.valid_shape = True
builder.graph.profile()
row = [builder.name, int(builder.graph.macs[0] / 1e9), builder.graph.params / 1e9, builder.kv_params / 1e9]
rows.append(row)
print(tabulate.tabulate(rows, headers=header))
def add_kv_cache():
bs = 1
seq_len = 128
ids_shape = [bs, seq_len]
past_sequence = 1024 # past length of KV cache
context_length = 8096 # total length of KV cache
builder = Builder(**Llama3_8B)
builder.build_graph(ids_shape)
builder.add_kv_cache(context_length, past_sequence)
builder.save_graph('Llama3_8B.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
def profile_model_with_devices():
RuntimeCfg = {
'Compute': {
'MM': 'FP16',
'MHA': 'FP16',
'Others': 'FP16',
},
'Bits': {
'MM': 16,
'MHA': 16,
'Others': 16,
}
}
bs = 1
prefill_length = 1024
context_length = 4096
models = [gptj_6b, yi_34B, phi2, phi3_mini, Phi_3_small_8k_instruct, Phi_3_medium_4k_instruct, llama2_7b, Llama3_8B,
llama_31_70B, QWen_7B, Qwen2_72B_Instruct]
# estimate latencies from hardware specs in onnx_tool.device
from onnx_tool.device import Devices
header = ['Model', 'Memory(G bytes)']
rows = []
device_names = ['Gaudi2H', 'H20']
for key in device_names:
header.append(key + '_prefill_latency')
for key in device_names:
header.append(key + '_decode_latency')
for model in models:
builder = Builder(**model)
ids_shape = [bs, prefill_length]
builder.build_graph(ids_shape)
past_kv_length = 0
builder.add_kv_cache(context_length, past_kv_length)
builder.graph.valid_shape = True
builder.profile(RuntimeCfg, None)
row = [builder.name, builder.context_mem[3] / 1e9]
for key in device_names:
builder.profile(RuntimeCfg, Devices[key])
row.append(builder.llm_profile[2])
# change to decode shape
builder.set_past_kv_length(prefill_length)
builder.graph.shape_infer(inputs={'ids': create_ndarray_int64([bs, 1])})
builder.graph.profile()
for key in device_names:
builder.profile(RuntimeCfg, Devices[key])
row.append(builder.llm_profile[2])
rows.append(row)
print(tabulate.tabulate(rows, headers=header))
def gpt2_kv_cache():
bs = 1
seq_len = 128
ids_shape = [bs, seq_len]
past_sequence = 0 # past length of KV cache
context_length = 8096 # total length of KV cache
builder = Builder(**gpt2)
WeightMap = {
'embedding': {
'embed': 'wte',
'pos': 'wpe'
},
'layer_prefix': 'h.',
'attention': {
'input_norm': 'ln_1',
'qkv': 'attn.c_attn',
'q': 'attn.q_proj',
'k': 'attn.k_proj',
'v': 'attn.v_proj',
'o': 'attn.c_proj',
'output_norm': 'post_attention_layernorm'
},
'mlp': {
'input_norm': 'ln_2',
'gate': 'mlp.gate_proj',
'up': 'mlp.c_fc',
'down': 'mlp.c_proj',
'gate_up': 'mlp.gate_up_proj',
'output_norm': 'post_feedforward_layernorm',
},
'lm_head': {
'input_norm': 'model.norm',
'lm': 'lm_head'
}
}
builder.build_graph(ids_shape, WeightMap)
builder.add_kv_cache(context_length, past_sequence)
builder.save_graph('gpt2.onnx')
builder.graph.valid_shape = True
builder.graph.profile()
builder.graph.print_node_map()
# generate summary table of these models
def profile_model():
from onnx_tool.device import Devices
RuntimeCfg = {
'Compute': {
'MM': 'FP16',
'MHA': 'FP16',
'Others': 'FP16',
},
'Bits': {
'MM': 16,
'MHA': 16,
'Others': 16,
}
}
bs = 1
prefill_length = 1024
context_length = 4096
ids_shape = [bs, prefill_length]
models = [llama2_7b, Llama3_8B]
device_names = ['Gaudi2H']
for model in models:
builder = Builder(**model)
# set prefill shape
builder.build_graph(ids_shape)
builder.add_kv_cache(context_length, 0)
builder.graph.valid_shape = True
model_name = builder.get_filename()
for key in device_names:
builder.profile(RuntimeCfg, Devices[key])
file = None # print
# file = f'{model_name}_{key}_prefill.csv' # save file
builder.print_profile(file)
# change to decode shape
builder.set_past_kv_length(prefill_length)
builder.graph.shape_infer(inputs={'ids': create_ndarray_int64([bs, 1])})
builder.graph.profile()
for key in device_names:
builder.profile(RuntimeCfg, Devices[key])
file = None # print
# file = f'{model_name}_{key}_decode.csv' # save file
builder.print_profile(file)
# generate summary table of these models
def profile_model_multicards():
from onnx_tool.device import Devices
RuntimeCfg = {
'Compute': {
'MM': 'FP16',
'MHA': 'FP16',
'Others': 'FP16',
},
'Bits': {
'MM': 16,
'MHA': 16,
'Others': 16,
}
}
bs = 1
prefill_length = 1024
context_length = 4096
ids_shape = [bs, prefill_length]
models = [Llama3_8B]
device_name = 'Gaudi2H'
device = {
'FP32': 11000,
'FP16': 428000, # benchmark number
'INT8': 848000, # benchmark number
'Bandwidth': 2230, # benchmark number
'LinkBandwidth': 525,
'Number': 4,
}
for model in models:
builder = Builder(**model)
# set prefill shape
builder.build_graph(ids_shape)
builder.add_kv_cache(context_length, 0)
builder.graph.valid_shape = True
model_name = builder.get_filename()
builder.profile(RuntimeCfg, device)
file = None # print
# file = f'{model_name}_{device_name}_prefill.csv' # save file
builder.print_profile(file)
# change to decode shape
builder.set_past_kv_length(prefill_length)
builder.graph.shape_infer(inputs={'ids': create_ndarray_int64([bs, 1])})
builder.graph.profile()
builder.profile(RuntimeCfg, device)
file = None # print
# file = f'{model_name}_{device_name}_decode.csv' # save file
builder.print_profile(file)
if __name__ == '__main__':
export_with_pytorch_weight_name()
add_hugging_face_model()
build_onnx_models()
profile_models()
add_kv_cache()
gpt2_kv_cache()
profile_model()
profile_model_with_devices()
profile_model_multicards()