-
-
Notifications
You must be signed in to change notification settings - Fork 4.4k
/
Copy pathlu_decompose.c
126 lines (110 loc) · 3.09 KB
/
lu_decompose.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/**
* \file
* \brief [LU decomposition](https://en.wikipedia.org/wiki/LU_decompositon) of a
* square matrix
* \author [Krishna Vedala](https://github.com/kvedala)
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#ifdef _OPENMP
#include <omp.h>
#endif
/** Perform LU decomposition on matrix
* \param[in] A matrix to decompose
* \param[out] L output L matrix
* \param[out] U output U matrix
* \param[in] mat_size input square matrix size
*/
int lu_decomposition(double **A, double **L, double **U, int mat_size)
{
int row, col, j;
// regularize each row
for (row = 0; row < mat_size; row++)
{
// Upper triangular matrix
#ifdef _OPENMP
#pragma omp for
#endif
for (col = row; col < mat_size; col++)
{
// Summation of L[i,j] * U[j,k]
double lu_sum = 0.;
for (j = 0; j < row; j++) lu_sum += L[row][j] * U[j][col];
// Evaluate U[i,k]
U[row][col] = A[row][col] - lu_sum;
}
// Lower triangular matrix
#ifdef _OPENMP
#pragma omp for
#endif
for (col = row; col < mat_size; col++)
{
if (row == col)
{
L[row][col] = 1.;
continue;
}
// Summation of L[i,j] * U[j,k]
double lu_sum = 0.;
for (j = 0; j < row; j++) lu_sum += L[col][j] * U[j][row];
// Evaluate U[i,k]
L[col][row] = (A[col][row] - lu_sum) / U[row][row];
}
}
return 0;
}
/** Function to display square matrix */
void display(double **A, int N)
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
printf("% 3.3g \t", A[i][j]);
}
putchar('\n');
}
}
/** Main function */
int main(int argc, char **argv)
{
int mat_size = 3; // default matrix size
const int range = 10;
const int range2 = range >> 1;
if (argc == 2)
mat_size = atoi(argv[1]);
srand(time(NULL)); // random number initializer
/* Create a square matrix with random values */
double **A = (double **)malloc(mat_size * sizeof(double *));
double **L = (double **)malloc(mat_size * sizeof(double *)); // output
double **U = (double **)malloc(mat_size * sizeof(double *)); // output
for (int i = 0; i < mat_size; i++)
{
// calloc so that all valeus are '0' by default
A[i] = (double *)calloc(mat_size, sizeof(double));
L[i] = (double *)calloc(mat_size, sizeof(double));
U[i] = (double *)calloc(mat_size, sizeof(double));
for (int j = 0; j < mat_size; j++)
/* create random values in the limits [-range2, range-1] */
A[i][j] = (double)(rand() % range - range2);
}
lu_decomposition(A, L, U, mat_size);
printf("A = \n");
display(A, mat_size);
printf("\nL = \n");
display(L, mat_size);
printf("\nU = \n");
display(U, mat_size);
/* Free dynamically allocated memory */
for (int i = 0; i < mat_size; i++)
{
free(A[i]);
free(L[i]);
free(U[i]);
}
free(A);
free(L);
free(U);
return 0;
}