-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference_one_image.py
259 lines (201 loc) · 7.88 KB
/
inference_one_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import torch
import numpy as np
import torch.nn as nn
import random
import cv2
import math
from utils_tools.erp2rec import ERP2REC
from models.assessor360 import creat_model
from config import Config
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
def setup_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def normal_distribution(x, mean, sigma):
return np.exp(-1 * ((x - mean) ** 2) / (2 * (sigma ** 2))) / (math.sqrt(2 * np.pi) * sigma)
def generate_lat_prob():
x = np.linspace(-90, 90, 181) / 90
y = {}
val = []
for i in range(x.shape[0]):
val.append(normal_distribution(x[i], 0, 0.2))
val = np.array(val)
val = softmax(val)
idx = -90
for i in range(val.shape[0]):
y[idx] = val[i]
idx += 1
return y
def softmax(x):
exp_x = np.exp(x)
sum_exp_x = np.sum(exp_x)
y = exp_x / sum_exp_x
return y
def sigmoid(x):
return 1 / (1 + np.exp(-x))
class ODIData(torch.utils.data.Dataset):
def __init__(self, dis_path='', viewport_size=(224, 224), viewport_nums=5, fov=[110, 110],
start_points=[[0, 0], [0, 0], [0, 0]], mean=0.5, var=0.5):
super(ODIData, self).__init__()
self.dis_path = dis_path
self.viewport_size = viewport_size
self.viewport_nums = viewport_nums
self.fov = fov
self.domain_transform = ERP2REC()
self.start_points = start_points
self.mean = mean
self.var = var
# define the latitude weights
self.lat_weights = generate_lat_prob()
def get_viewport_sequences(self):
d_img = cv2.imread(self.dis_path, cv2.IMREAD_COLOR)
self.height, self.width = d_img.shape[0], d_img.shape[1]
d1 = self.select_viewports(d_img)
for i in range(d1.shape[0]):
for j in range(d1.shape[1]):
d1[i][j] = cv2.cvtColor(d1[i][j], cv2.COLOR_BGR2RGB)
d1[i][j] = np.array(d1[i][j]).astype('float32') / 255
d1 = np.transpose(d1, (0, 1, 4, 2, 3))
d1 = np.array(d1)
d1 = (d1 - self.mean) / self.var
d1 = torch.from_numpy(d1).type(torch.FloatTensor)
return d1
def normalization(self, data):
range = np.max(data) - np.min(data)
return (data - np.min(data)) / range, range
def cal_entropy(self, sig):
len = sig.size
sig_set = list(set(sig))
p_list = [np.size(sig[sig == i]) / len for i in sig_set]
entropy = np.sum([p * np.log2(1.0 / p) for p in p_list])
return entropy
def get_img_entropy(self, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
gray_img = np.array(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY))
sum_entropy = self.cal_entropy(gray_img.flatten())
return sum_entropy
def cal_next_patch_coordinate(self, viewport, cur_coordinate=(0, 0)):
"""
c: Longitude [-180, 180], r: Latitude [-90, 90]
"""
r, c = cur_coordinate[0], cur_coordinate[1]
idx2next_coordinate = {0:(c - 24, r + 24), 1:(c + 0, r + 24), 2:(c + 24, r + 24),
3:(c - 24, r + 0), 4:(c + 24, r + 0), 5:(c - 24, r - 24),
6:(c - 0, r - 24), 7:(c + 24, r - 24)}
# obtain viewport shape
H, W, C = viewport.shape
patch_size = H // 4
ent_list = []
for i in range(0, H - patch_size, patch_size):
for j in range(0, W - patch_size, patch_size):
if i == patch_size and j == patch_size:
continue
img_patch = viewport[i:i + patch_size * 2, j:j + patch_size * 2, :]
# calculate the image entropy
cur_ent = self.get_img_entropy(img_patch)
ent_list.append(cur_ent)
ent_list = np.array(ent_list)
# softmax to get the entropy probability
ent_list = softmax(ent_list)
# get current latitude weights
cur_lat_weights = []
zero_idx = np.ones(8)
for i in range(8):
cur_c, cur_r = idx2next_coordinate[i]
cur_c = self.modify_c(cur_c)
if cur_r > 90 or cur_r < -90:
cur_lat_weights.append(-1e-9)
zero_idx[i] = 0
else:
cur_lat_weights.append(self.lat_weights[cur_r])
if str(cur_r) + str(cur_c) in self.vis_coords.keys():
cur_lat_weights[i] *= 0.7
cur_lat_weights = softmax(np.array(cur_lat_weights) * 100)
cur_lat_weights = cur_lat_weights * zero_idx
integrated_weights = softmax(ent_list * cur_lat_weights * 100)
np.random.seed(20)
while True:
idx = np.random.choice([0, 1, 2, 3, 4, 5, 6, 7], p=integrated_weights.ravel())
if zero_idx[idx] != 0:
break
# new longitude and latitude
_c, _r = idx2next_coordinate[idx]
_c = self.modify_c(_c)
if _r > 90 or _r < -90 or _c > 180 or _c < -180:
print("Warning:::::::==================::::::::: {}".format(_r))
print("Warning:::::::==================::::::::: {}".format(_c))
return (_r, _c)
def dfs_get_viewport(self, img, cur_coordinate=(0, 0)):
# r:[90, -90], c:[-180, 180]
r, c = cur_coordinate[0], cur_coordinate[1]
viewport = self.domain_transform.toREC(
frame=img,
center_point=np.array([c, r]),
FOV=self.fov,
width=self.viewport_size[0],
height=self.viewport_size[1]
)
self.vis_coords[str(r) + str(c)] = 1
self.viewports_list.append(viewport)
if len(self.viewports_list) == self.viewport_nums:
return
next_coordinate = self.cal_next_patch_coordinate(viewport, (r, c))
next_r, next_c = next_coordinate
return self.dfs_get_viewport(img, cur_coordinate=(next_r, next_c))
def select_viewports(self, img):
self.seq_list = []
for i in range(len(self.start_points)):
self.viewports_list = []
self.vis_coords = {}
self.dfs_get_viewport(img, cur_coordinate=self.start_points[i])
self.seq_list.append(np.array(self.viewports_list, dtype=np.float32))
return np.array(self.seq_list)
def modify_c(self, _c):
if _c > 180:
_c = -180 + (_c - 180)
elif _c < -180:
_c = 180 - (-180 - _c)
else:
pass
return _c
if __name__ == '__main__':
cpu_num = 1
os.environ['OMP_NUM_THREADS'] = str(cpu_num)
os.environ['OPENBLAS_NUM_THREADS'] = str(cpu_num)
os.environ['MKL_NUM_THREADS'] = str(cpu_num)
os.environ['VECLIB_MAXIMUM_THREADS'] = str(cpu_num)
os.environ['NUMEXPR_NUM_THREADS'] = str(cpu_num)
torch.set_num_threads(cpu_num)
setup_seed(20)
# config file
config = Config({
# image path
"image_path": "./images/dis1_1.png",
# model
"num_layers": 6,
"viewport_nums": 5,
"embed_dim": 128,
"dab_layers": 4,
# data
"start_points": [[0, 0], [0, 0], [0, 0]],
"viewport_size": (224, 224),
"fov": [110, 110],
"model_weight_path": "./output/models/mvaqd/exp1_mvaqd/best_ckpt.pt"
})
ODI = ODIData(dis_path=config.image_path, viewport_size=config.viewport_size, viewport_nums=config.viewport_nums,
fov=config.fov, start_points=config.start_points)
viewport_sequences = ODI.get_viewport_sequences()
net = creat_model(config=config, pretrained=True)
net = nn.DataParallel(net).cuda()
with torch.no_grad():
net.eval()
image = viewport_sequences.unsqueeze(0)
score = net(image)
print("ODI score: {}".format(score))