-
Notifications
You must be signed in to change notification settings - Fork 277
/
train_model.py
209 lines (181 loc) · 8.39 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#import pandas as pd # data analysis toolkit - create, read, update, delete datasets
import numpy as np #matrix math
from sklearn.model_selection import train_test_split #to split out training and testing data
#keras is a high level wrapper on top of tensorflow (machine learning library)
#The Sequential container is a linear stack of layers
import tensorflow
from keras.models import Sequential
#popular optimization strategy that uses gradient descent
from keras.optimizers import Adam,SGD
#to save our model periodically as checkpoints for loading later
from keras.callbacks import ModelCheckpoint
from keras.callbacks import EarlyStopping
from keras.callbacks import TensorBoard
#what types of layers do we want our model to have?
from keras.layers import Lambda, Conv2D, MaxPooling2D, Dropout, Dense, Flatten
from keras.models import Model, Input
from keras.models import load_model
import glob
import os
import glob
import h5py
import sys
import keras
#for debugging, allows for reproducible (deterministic) results
np.random.seed(0)
IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS = 120, 160, 3
INPUT_SHAPE = (IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS)
def load_data():
"""
Load training data and split it into training and validation set
"""
# load training data
image_array = np.zeros((1,120,160,3))
label_array = np.zeros((1, 5), 'float')
training_data = glob.glob('training_data_npz/*.npz')
# if no data, exit
if not training_data:
print ("No training data in directory, exit")
sys.exit()
for single_npz in training_data:
with np.load(single_npz) as data:
print(data.keys())
train_temp = data['train_imgs']
train_labels_temp = data['train_labels']
image_array = np.vstack((image_array, train_temp))
label_array = np.vstack((label_array, train_labels_temp))
X = image_array[1:, :]
y = label_array[1:, :]
print ('Image array shape: '+ str(X.shape))
print ('Label array shape: '+ str(y.shape))
print(np.mean(X))
print(np.var(X))
#now we can split the data into a training (80), testing(20), and validation set
#thanks scikit learn
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=0)
return X_train, X_valid, y_train, y_valid
def build_model(keep_prob):
"""
NVIDIA model used
Image normalization to avoid saturation and make gradients work better.
Convolution: 5x5, filter: 24, strides: 2x2, activation: ELU
Convolution: 5x5, filter: 36, strides: 2x2, activation: ELU
Convolution: 5x5, filter: 48, strides: 2x2, activation: ELU
Convolution: 3x3, filter: 64, strides: 1x1, activation: ELU
Convolution: 3x3, filter: 64, strides: 1x1, activation: ELU
Drop out (0.5)
Fully connected: neurons: 100, activation: ELU
Fully connected: neurons: 50, activation: ELU
Fully connected: neurons: 10, activation: ELU
Fully connected: neurons: 1 (output)
# the convolution layers are meant to handle feature engineering
the fully connected layer for predicting the steering angle.
dropout avoids overfitting
ELU(Exponential linear unit) function takes care of the Vanishing gradient problem.
"""
# IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS = 240, 240, 3
# INPUT_SHAPE = (IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS)
model = Sequential()
model.add(Lambda(lambda x: (x/102.83-1), input_shape=INPUT_SHAPE))#/85-5139
model.add(Conv2D(24, (5, 5), activation='elu', strides=(2, 2)))
model.add(Conv2D(36, (5, 5), activation='elu', strides=(2, 2)))
model.add(Conv2D(48, (5, 5), activation='elu', strides=(2, 2)))
#model.add(Dropout(0.5))
model.add(Conv2D(64, (3, 3), activation='elu'))
#model.add(Dropout(0.3))
model.add(Conv2D(64, (3, 3), activation='elu'))
model.add(Dropout(keep_prob))
model.add(Flatten())
model.add(Dense(500, activation='elu'))
#model.add(Dropout(0.1))
model.add(Dense(250, activation='elu'))
#model.add(Dropout(0.1))
model.add(Dense(50, activation='elu'))
#model.add(Dropout(0.1))
model.add(Dense(5))
model.summary()
return model
def train_model(model,learning_rate,nb_epoch,samples_per_epoch, batch_size,X_train, X_valid, y_train, y_valid):
"""
Train the model
"""
#Saves the model after every epoch.
#quantity to monitor, verbosity i.e logging mode (0 or 1),
#if save_best_only is true the latest best model according to the quantity monitored will not be overwritten.
#mode: one of {auto, min, max}. If save_best_only=True, the decision to overwrite the current save file is
# made based on either the maximization or the minimization of the monitored quantity. For val_acc,
#this should be max, for val_loss this should be min, etc. In auto mode, the direction is automatically
# inferred from the name of the monitored quantity.
checkpoint = ModelCheckpoint('model-{epoch:03d}.h5',
monitor='val_loss',
verbose=0,
save_best_only=True,
mode='min')
# EarlyStopping patience:当early
# stop被激活(如发现loss相比上一个epoch训练没有下降),则经过patience个epoch后停止训练。
# mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值停止下降则中止训练。在max模式下,当检测值不再上升则停止训练。
early_stop = EarlyStopping(monitor='val_loss', min_delta=.0005, patience=4,
verbose=1, mode='min')
tensorboard = TensorBoard(log_dir='./logs', histogram_freq=0, batch_size=20, write_graph=True, write_grads=True, write_images=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)
#calculate the difference between expected steering angle and actual steering angle
#square the difference
#add up all those differences for as many data points as we have
#divide by the number of them
#that value is our mean squared error! this is what we want to minimize via
#gradient descent
#opt = SGD(lr=0.0001)
model.compile(loss='mean_squared_error', optimizer=Adam(lr=learning_rate),metrics=['accuracy'])#
#Fits the model on data generated batch-by-batch by a Python generator.
#The generator is run in parallel to the model, for efficiency.
#For instance, this allows you to do real-time data augmentation on images on CPU in
#parallel to training your model on GPU.
#so we reshape our data into their appropriate batches and train our model simulatenously
model.fit_generator(batch_generator(X_train, y_train,batch_size),
steps_per_epoch=samples_per_epoch/batch_size,
epochs=nb_epoch,
max_queue_size=1,
validation_data=batch_generator(X_valid, y_valid, batch_size),
validation_steps=len(X_valid)/batch_size,
callbacks=[tensorboard, checkpoint, early_stop],
verbose=2)
## model.fit(X_train,y_train,samples_per_epoch,nb_epoch,max_q_size=1,X_valid,y_valid,\
## nb_val_samples=len(X_valid),callbacks=[checkpoint],verbose=1)
def batch_generator(X, y, batch_size):
"""
Generate training image give image paths and associated steering angles
"""
images = np.empty([batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS])
steers = np.empty([batch_size,5])
while True:
i = 0
for index in np.random.permutation(X.shape[0]):
images[i] = X[index]
steers[i] = y[index]
i += 1
if i == batch_size:
break
yield (images, steers)
def main():
#print parameters
print('-' * 30)
print('Parameters')
print('-' * 30)
keep_prob = 0.5
learning_rate = 0.0001
nb_epoch = 100
samples_per_epoch = 3000
batch_size = 40
print('keep_prob = %f', keep_prob)
print('learning_rate = %f', learning_rate)
print('nb_epoch = %d', nb_epoch)
print('samples_per_epoch = %d', samples_per_epoch)
print('batch_size = %d', batch_size)
print('-' * 30)
#load data
data = load_data()
#build model
model = build_model(keep_prob)
#train model on data, it saves as model.h5
train_model(model,learning_rate,nb_epoch,samples_per_epoch, batch_size, *data)
if __name__ == '__main__':
main()