forked from waityousea/xuniren
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
608 lines (475 loc) · 25.1 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# python nerf/asr.py --wav ../data/audio/aud.wav --save_feats
import time
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCTC, AutoProcessor
import pyaudio
import soundfile as sf
import resampy
from queue import Queue
from threading import Thread, Event
import argparse
from transformers import AutoModelForCTC, AutoProcessor
from nerf.provider import NeRFDataset_Test
from nerf.utils import *
from nerf.network import NeRFNetwork
import argparse
import subprocess
def _read_frame(stream, exit_event, queue, chunk):
while True:
if exit_event.is_set():
print(f'[INFO] read frame thread ends')
break
frame = stream.read(chunk, exception_on_overflow=False)
frame = np.frombuffer(frame, dtype=np.int16).astype(np.float32) / 32767 # [chunk]
queue.put(frame)
def _play_frame(stream, exit_event, queue, chunk):
while True:
if exit_event.is_set():
print(f'[INFO] play frame thread ends')
break
frame = queue.get()
frame = (frame * 32767).astype(np.int16).tobytes()
stream.write(frame, chunk)
class ASR:
def __init__(self, opt, processor, loadmodel, asr_wav):
self.opt = opt
self.play = False
self.asr_wav = asr_wav
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.fps = opt.fps # 20 ms per frame
self.sample_rate = 16000
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
self.mode = 'live' if self.asr_wav == '' else 'file'
if 'esperanto' in self.opt.asr_model:
self.audio_dim = 44
elif 'deepspeech' in self.opt.asr_model:
self.audio_dim = 29
else:
self.audio_dim = 32
# prepare context cache
# each segment is (stride_left + ctx + stride_right) * 20ms, latency should be (ctx + stride_right) * 20ms
self.context_size = opt.m
self.stride_left_size = opt.l
self.stride_right_size = opt.r
self.text = '[START]\n'
self.terminated = False
self.frames = []
# pad left frames
if self.stride_left_size > 0:
self.frames.extend([np.zeros(self.chunk, dtype=np.float32)] * self.stride_left_size)
self.exit_event = Event()
self.audio_instance = pyaudio.PyAudio()
# create input stream
if self.mode == 'file':
self.file_stream = self.create_file_stream()
else:
# start a background process to read frames
self.input_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate,
input=True, output=False, frames_per_buffer=self.chunk)
self.queue = Queue()
self.process_read_frame = Thread(target=_read_frame,
args=(self.input_stream, self.exit_event, self.queue, self.chunk))
# play out the audio too...?
if self.play:
self.output_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate,
input=False, output=True, frames_per_buffer=self.chunk)
self.output_queue = Queue()
self.process_play_frame = Thread(target=_play_frame,
args=(self.output_stream, self.exit_event, self.output_queue, self.chunk))
# current location of audio
self.idx = 0
"""
模型加载
# create wav2vec model
print(f'[INFO] loading ASR model {self.opt.asr_model}...')
self.processor = AutoProcessor.from_pretrained(opt.asr_model)
self.model = AutoModelForCTC.from_pretrained(opt.asr_model).to(self.device)
"""
self.processor = processor
self.model = loadmodel
# prepare to save logits
if self.opt.asr_save_feats:
self.all_feats = []
# the extracted features
# use a loop queue to efficiently record endless features: [f--t---][-------][-------]
self.feat_buffer_size = 4
self.feat_buffer_idx = 0
self.feat_queue = torch.zeros(self.feat_buffer_size * self.context_size, self.audio_dim, dtype=torch.float32,
device=self.device)
# TODO: hard coded 16 and 8 window size...
self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
self.tail = 8
# attention window...
self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32,
device=self.device)] * 4 # 4 zero padding...
# warm up steps needed: mid + right + window_size + attention_size
self.warm_up_steps = self.context_size + self.stride_right_size + 8 + 2 * 3
self.listening = False
self.playing = False
def listen(self):
# start
if self.mode == 'live' and not self.listening:
print(f'[INFO] starting read frame thread...')
self.process_read_frame.start()
self.listening = True
if self.play and not self.playing:
print(f'[INFO] starting play frame thread...')
self.process_play_frame.start()
self.playing = True
def stop(self):
self.exit_event.set()
if self.play:
self.output_stream.stop_stream()
self.output_stream.close()
if self.playing:
self.process_play_frame.join()
self.playing = False
if self.mode == 'live':
self.input_stream.stop_stream()
self.input_stream.close()
if self.listening:
self.process_read_frame.join()
self.listening = False
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.stop()
if self.mode == 'live':
# live mode: also print the result text.
self.text += '\n[END]'
print(self.text)
def get_next_feat(self):
# return a [1/8, 16] window, for the next input to nerf side.
while len(self.att_feats) < 8:
# [------f+++t-----]
if self.front < self.tail:
feat = self.feat_queue[self.front:self.tail]
# [++t-----------f+]
else:
feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)
self.front = (self.front + 2) % self.feat_queue.shape[0]
self.tail = (self.tail + 2) % self.feat_queue.shape[0]
# print(self.front, self.tail, feat.shape)
self.att_feats.append(feat.permute(1, 0))
att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16]
# discard old
self.att_feats = self.att_feats[1:]
return att_feat
def run_step(self):
if self.terminated:
return
# get a frame of audio
frame = self.get_audio_frame()
# the last frame
if frame is None:
# terminate, but always run the network for the left frames
self.terminated = True
else:
self.frames.append(frame)
# put to output
if self.play:
self.output_queue.put(frame)
# context not enough, do not run network.
if len(self.frames) < self.stride_left_size + self.context_size + self.stride_right_size:
return
inputs = np.concatenate(self.frames) # [N * chunk]
# discard the old part to save memory
if not self.terminated:
self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]
logits, labels, text = self.frame_to_text(inputs)
feats = logits # better lips-sync than labels
# save feats
if self.opt.asr_save_feats:
self.all_feats.append(feats)
# record the feats efficiently.. (no concat, constant memory)
start = self.feat_buffer_idx * self.context_size
end = start + feats.shape[0]
self.feat_queue[start:end] = feats
self.feat_buffer_idx = (self.feat_buffer_idx + 1) % self.feat_buffer_size
# very naive, just concat the text output.
if text != '':
self.text = self.text + ' ' + text
# will only run once at ternimation
if self.terminated:
self.text += '\n[END]'
print(self.text)
if self.opt.asr_save_feats:
print(f'[INFO] save all feats for training purpose... ')
feats = torch.cat(self.all_feats, dim=0) # [N, C]
# print('[INFO] before unfold', feats.shape)
window_size = 16
padding = window_size // 2
feats = feats.view(-1, self.audio_dim).permute(1, 0).contiguous() # [C, M]
feats = feats.view(1, self.audio_dim, -1, 1) # [1, C, M, 1]
unfold_feats = F.unfold(feats, kernel_size=(window_size, 1), padding=(padding, 0),
stride=(2, 1)) # [1, C * window_size, M / 2 + 1]
unfold_feats = unfold_feats.view(self.audio_dim, window_size, -1).permute(2, 1,
0).contiguous() # [C, window_size, M / 2 + 1] --> [M / 2 + 1, window_size, C]
# print('[INFO] after unfold', unfold_feats.shape)
# save to a npy file
if 'esperanto' in self.opt.asr_model:
output_path = self.asr_wav.replace('.wav', '_eo.npy')
else:
output_path = self.asr_wav.replace('.wav', '.npy')
np.save(output_path, unfold_feats.cpu().numpy())
print(f"[INFO] saved logits to {output_path}")
def create_file_stream(self):
stream, sample_rate = sf.read(self.asr_wav) # [T*sample_rate,] float64
stream = stream.astype(np.float32)
if stream.ndim > 1:
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
stream = stream[:, 0]
if sample_rate != self.sample_rate:
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)
print(f'[INFO] loaded audio stream {self.asr_wav}: {stream.shape}')
return stream
def create_pyaudio_stream(self):
import pyaudio
print(f'[INFO] creating live audio stream ...')
audio = pyaudio.PyAudio()
# get devices
info = audio.get_host_api_info_by_index(0)
n_devices = info.get('deviceCount')
for i in range(0, n_devices):
if (audio.get_device_info_by_host_api_device_index(0, i).get('maxInputChannels')) > 0:
name = audio.get_device_info_by_host_api_device_index(0, i).get('name')
print(f'[INFO] choose audio device {name}, id {i}')
break
# get stream
stream = audio.open(input_device_index=i,
format=pyaudio.paInt16,
channels=1,
rate=self.sample_rate,
input=True,
frames_per_buffer=self.chunk)
return audio, stream
def get_audio_frame(self):
if self.mode == 'file':
if self.idx < self.file_stream.shape[0]:
frame = self.file_stream[self.idx: self.idx + self.chunk]
self.idx = self.idx + self.chunk
return frame
else:
return None
else:
frame = self.queue.get()
# print(f'[INFO] get frame {frame.shape}')
self.idx = self.idx + self.chunk
return frame
def frame_to_text(self, frame):
# frame: [N * 320], N = (context_size + 2 * stride_size)
inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
with torch.no_grad():
result = self.model(inputs.input_values.to(self.device))
logits = result.logits # [1, N - 1, 32]
# cut off stride
left = max(0, self.stride_left_size)
right = min(logits.shape[1],
logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input.
# do not cut right if terminated.
if self.terminated:
right = logits.shape[1]
logits = logits[:, left:right]
# print(frame.shape, inputs.input_values.shape, logits.shape)
predicted_ids = torch.argmax(logits, dim=-1)
transcription = self.processor.batch_decode(predicted_ids)[0].lower()
# for esperanto
# labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '‘', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '–', 'fi', 'l', 'p', '’', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]'])
# labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z'])
# print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()]))
# print(predicted_ids[0])
# print(transcription)
return logits[0], predicted_ids[0], transcription # [N,]
def run(self):
self.listen()
while not self.terminated:
self.run_step()
def clear_queue(self):
# clear the queue, to reduce potential latency...
print(f'[INFO] clear queue')
if self.mode == 'live':
self.queue.queue.clear()
if self.play:
self.output_queue.queue.clear()
def warm_up(self):
self.listen()
print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s')
t = time.time()
for _ in range(self.warm_up_steps):
self.run_step()
if torch.cuda.is_available():
torch.cuda.synchronize()
t = time.time() - t
print(f'[INFO] warm-up done, actual latency = {t:.6f}s')
self.clear_queue()
def audio_pre_process():
global opt_au, model_au, processor_au
parser = argparse.ArgumentParser()
parser.add_argument('--play', action='store_true', help="play out the audio")
parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
# parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
parser.add_argument('--save_feats', default=True, action='store_true')
# audio FPS
parser.add_argument('--fps', type=int, default=50)
# sliding window left-middle-right length.
parser.add_argument('-l', type=int, default=10)
parser.add_argument('-m', type=int, default=50)
parser.add_argument('-r', type=int, default=10)
opt = parser.parse_args()
# fix
# opt.asr_play = opt.play
opt.asr_model = opt.model
opt.asr_save_feats = opt.save_feats
# create wav2vec model
asr_model = 'cpierse/wav2vec2-large-xlsr-53-esperanto'
print(f'[INFO] loading ASR model {asr_model}...')
processor_au = AutoProcessor.from_pretrained(asr_model)
model_au = AutoModelForCTC.from_pretrained(asr_model).to('cuda')
opt_au = opt
def video_pre_process():
global opt_vid, model_vid, trainer_vid
parser = argparse.ArgumentParser()
#parser.add_argument('--pose', type=str, default="data/kh.json", help="transforms.json, pose source")
parser.add_argument('--pose', type=str, default="data/kf.json", help="transforms.json, pose source")
parser.add_argument('--bg_img', type=str, default='data/bg.jpg', help="bg.jpg, background image source")
parser.add_argument('-O', action='store_true', help="equals --fp16 --cuda_ray --exp_eye")
# parser.add_argument('--test', action='store_true', help="test mode (load model and test dataset)")
# parser.add_argument('--test_train', action='store_true', help="test mode (load model and train dataset)")
parser.add_argument('--data_range', type=int, nargs='*', default=[0, -1], help="data range to use")
parser.add_argument('--workspace', type=str, default='data/video')
parser.add_argument('--seed', type=int, default=0)
### training options
# parser.add_argument('--iters', type=int, default=200000, help="training iters")
# parser.add_argument('--lr', type=float, default=5e-3, help="initial learning rate")
# parser.add_argument('--lr_net', type=float, default=5e-4, help="initial learning rate")
#parser.add_argument('--ckpt', type=str, default='data/pretrained/ngp_kh.pth')
parser.add_argument('--ckpt', type=str, default='data/pretrained/ngp_kf.pth')
parser.add_argument('--num_rays', type=int, default=4096 * 16,
help="num rays sampled per image for each training step")
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=16,
help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=16,
help="num steps sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=0,
help="num steps up-sampled per ray (only valid when NOT using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16,
help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096,
help="batch size of rays at inference to avoid OOM (only valid when NOT using --cuda_ray)")
### network backbone options
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training")
parser.add_argument('--lambda_amb', type=float, default=0.1, help="lambda for ambient loss")
parser.add_argument('--fbg', action='store_true', help="frame-wise bg")
parser.add_argument('--exp_eye', action='store_true', help="explicitly control the eyes")
parser.add_argument('--fix_eye', type=float, default=-1,
help="fixed eye area, negative to disable, set to 0-0.3 for a reasonable eye")
parser.add_argument('--smooth_eye', action='store_true', help="smooth the eye area sequence")
parser.add_argument('--torso_shrink', type=float, default=0.8,
help="shrink bg coords to allow more flexibility in deform")
### dataset options
parser.add_argument('--color_space', type=str, default='srgb', help="Color space, supports (linear, srgb)")
# parser.add_argument('--preload', action='store_true', help="preload all data into GPU, accelerate training but use more GPU memory")
# (the default value is for the fox dataset)
parser.add_argument('--bound', type=float, default=1,
help="assume the scene is bounded in box[-bound, bound]^3, if > 1, will invoke adaptive ray marching.")
parser.add_argument('--scale', type=float, default=4, help="scale camera location into box[-bound, bound]^3")
parser.add_argument('--offset', type=float, nargs='*', default=[0, 0, 0], help="offset of camera location")
parser.add_argument('--dt_gamma', type=float, default=1 / 256,
help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.05, help="minimum near distance for camera")
parser.add_argument('--density_thresh', type=float, default=10,
help="threshold for density grid to be occupied (sigma)")
parser.add_argument('--density_thresh_torso', type=float, default=0.01,
help="threshold for density grid to be occupied (alpha)")
parser.add_argument('--patch_size', type=int, default=1,
help="[experimental] render patches in training, so as to apply LPIPS loss. 1 means disabled, use [64, 32, 16] to enable")
parser.add_argument('--finetune_lips', action='store_true', help="use LPIPS and landmarks to fine tune lips region")
parser.add_argument('--smooth_lips', action='store_true', help="smooth the enc_a in a exponential decay way...")
parser.add_argument('--torso', action='store_true', help="fix head and train torso")
parser.add_argument('--head_ckpt', type=str, default='', help="head model")
### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=450, help="GUI width")
parser.add_argument('--H', type=int, default=450, help="GUI height")
parser.add_argument('--radius', type=float, default=3.35, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=21.24, help="default GUI camera fovy")
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
### else
parser.add_argument('--att', type=int, default=2,
help="audio attention mode (0 = turn off, 1 = left-direction, 2 = bi-direction)")
parser.add_argument('--emb', action='store_true', help="use audio class + embedding instead of logits")
parser.add_argument('--ind_dim', type=int, default=4, help="individual code dim, 0 to turn off")
parser.add_argument('--ind_num', type=int, default=10000,
help="number of individual codes, should be larger than training dataset size")
parser.add_argument('--ind_dim_torso', type=int, default=8, help="individual code dim, 0 to turn off")
parser.add_argument('--amb_dim', type=int, default=2, help="ambient dimension")
parser.add_argument('--part', action='store_true', help="use partial training data (1/10)")
parser.add_argument('--part2', action='store_true', help="use partial training data (first 15s)")
parser.add_argument('--train_camera', action='store_true', help="optimize camera pose")
parser.add_argument('--smooth_path', action='store_true',
help="brute-force smooth camera pose trajectory with a window size")
parser.add_argument('--smooth_path_window', type=int, default=7, help="smoothing window size")
# asr
parser.add_argument('--asr', action='store_true', help="load asr for real-time app")
parser.add_argument('--asr_wav', type=str, default='', help="load the wav and use as input")
parser.add_argument('--asr_play', action='store_true', help="play out the audio")
parser.add_argument('--asr_model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
# parser.add_argument('--asr_model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
parser.add_argument('--asr_save_feats', action='store_true')
# audio FPS
parser.add_argument('--fps', type=int, default=50)
# sliding window left-middle-right length (unit: 20ms)
parser.add_argument('-l', type=int, default=10)
parser.add_argument('-m', type=int, default=50)
parser.add_argument('-r', type=int, default=10)
opt = parser.parse_args()
# assert test mode
opt.test = True
opt.test_train = False
# explicit smoothing
opt.smooth_path = True
opt.smooth_eye = True
opt.smooth_lips = True
assert opt.pose != '', 'Must provide a pose source'
# if opt.O:
opt.fp16 = True
opt.exp_eye = True
opt.cuda_ray = True
opt.torso = True
# assert opt.cuda_ray, "Only support CUDA ray mode."
seed_everything(opt.seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeRFNetwork(opt)
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, fp16=opt.fp16, metrics=[],
use_checkpoint=opt.ckpt)
opt_vid = opt
trainer_vid = trainer
model_vid = model
def video_process(opt, trainer, model, dir_path):
test_loader = NeRFDataset_Test(opt, device='cuda').dataloader()
# temp fix: for update_extra_states
model.aud_features = test_loader._data.auds
model.eye_areas = test_loader._data.eye_area
test = trainer.test(test_loader, name=dir_path['input'].split("/")[-1].split(".")[0])
command = "ffmpeg -y -i %s -i %s -c:v copy -c:a aac %s" % (dir_path['input'], dir_path['audio'], dir_path['output'])
subprocess.run(command.split(), capture_output=True)
return dir_path['output']
def audio_process(audio_path):
with ASR(opt_au, processor_au, model_au, audio_path) as asr:
asr.run()
def generate_video(audio_path, audio_path_eo, video_path, output_path):
opt_vid.aud = audio_path_eo
#video_path = 'data/video/results/ngp_ep0074.mp4'
#output_path = 'data/video/results/output.mp4'
dir_path = {
'audio': audio_path,
'input': video_path,
'output': output_path,
}
path = video_process(opt_vid, trainer_vid, model_vid, dir_path)
print(path)
return path