forked from Ma-Lab-Berkeley/ReduNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
174 lines (157 loc) · 7.82 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import scipy.stats as sps
import torch
from sklearn.svm import LinearSVC
from sklearn.decomposition import PCA
from sklearn.decomposition import TruncatedSVD
from sklearn.linear_model import SGDClassifier
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
import functional as F
import utils
def evaluate(eval_dir, method, train_features, train_labels, test_features, test_labels, **kwargs):
if method == 'svm':
acc_train, acc_test = svm(train_features, train_labels, test_features, test_labels)
elif method == 'knn':
acc_train, acc_test = knn(train_features, train_labels, test_features, test_labels, **kwargs)
elif method == 'nearsub':
acc_train, acc_test = nearsub(train_features, train_labels, test_features, test_labels, **kwargs)
elif method == 'nearsub_pca':
acc_train, acc_test = knn(train_features, train_labels, test_features, test_labels, **kwargs)
acc_dict = {'train': acc_train, 'test': acc_test}
utils.save_params(eval_dir, acc_dict, name=f'acc_{method}')
def svm(train_features, train_labels, test_features, test_labels):
svm = LinearSVC(verbose=0, random_state=10)
svm.fit(train_features, train_labels)
acc_train = svm.score(train_features, train_labels)
acc_test = svm.score(test_features, test_labels)
print("SVM: {}, {}".format(acc_train, acc_test))
return acc_train, acc_test
# def knn(train_features, train_labels, test_features, test_labels, k=5):
# sim_mat = train_features @ train_features.T
# topk = torch.from_numpy(sim_mat).topk(k=k, dim=0)
# topk_pred = train_labels[topk.indices]
# test_pred = torch.tensor(topk_pred).mode(0).values.detach()
# acc_train = compute_accuracy(test_pred.numpy(), train_labels)
# sim_mat = train_features @ test_features.T
# topk = torch.from_numpy(sim_mat).topk(k=k, dim=0)
# topk_pred = train_labels[topk.indices]
# test_pred = torch.tensor(topk_pred).mode(0).values.detach()
# acc_test = compute_accuracy(test_pred.numpy(), test_labels)
# print("kNN: {}, {}".format(acc_train, acc_test))
# return acc_train, acc_test
def knn(train_features, train_labels, test_features, test_labels, k=5):
sim_mat = train_features @ train_features.T
topk = sim_mat.topk(k=k, dim=0)
topk_pred = train_labels[topk.indices]
test_pred = topk_pred.mode(0).values.detach()
acc_train = compute_accuracy(test_pred, train_labels)
sim_mat = train_features @ test_features.T
topk = sim_mat.topk(k=k, dim=0)
topk_pred = train_labels[topk.indices]
test_pred = topk_pred.mode(0).values.detach()
acc_test = compute_accuracy(test_pred, test_labels)
print("kNN: {}, {}".format(acc_train, acc_test))
return acc_train, acc_test
# # TODO: 1. implement pytorch version 2. suport batches
# def nearsub(train_features, train_labels, test_features, test_labels, num_classes, n_comp=10, return_pred=False):
# train_scores, test_scores = [], []
# classes = np.arange(num_classes)
# features_sort, _ = utils.sort_dataset(train_features, train_labels,
# classes=classes, stack=False)
# fd = features_sort[0].shape[1]
# if n_comp >= fd:
# n_comp = fd - 1
# for j in classes:
# svd = TruncatedSVD(n_components=n_comp).fit(features_sort[j])
# subspace_j = np.eye(fd) - svd.components_.T @ svd.components_
# train_j = subspace_j @ train_features.T
# test_j = subspace_j @ test_features.T
# train_scores_j = np.linalg.norm(train_j, ord=2, axis=0)
# test_scores_j = np.linalg.norm(test_j, ord=2, axis=0)
# train_scores.append(train_scores_j)
# test_scores.append(test_scores_j)
# train_pred = np.argmin(train_scores, axis=0)
# test_pred = np.argmin(test_scores, axis=0)
# if return_pred:
# return train_pred.tolist(), test_pred.tolist()
# train_acc = compute_accuracy(classes[train_pred], train_labels)
# test_acc = compute_accuracy(classes[test_pred], test_labels)
# print('SVD: {}, {}'.format(train_acc, test_acc))
# return train_acc, test_acc
def nearsub(train_features, train_labels, test_features, test_labels,
num_classes, n_comp=10, return_pred=False):
train_scores, test_scores = [], []
classes = np.arange(num_classes)
features_sort, _ = utils.sort_dataset(train_features, train_labels,
classes=classes, stack=False)
fd = features_sort[0].shape[1]
for j in classes:
_, _, V = torch.svd(features_sort[j])
components = V[:, :n_comp].T
subspace_j = torch.eye(fd) - components.T @ components
train_j = subspace_j @ train_features.T
test_j = subspace_j @ test_features.T
train_scores_j = torch.linalg.norm(train_j, ord=2, axis=0)
test_scores_j = torch.linalg.norm(test_j, ord=2, axis=0)
train_scores.append(train_scores_j)
test_scores.append(test_scores_j)
train_pred = torch.stack(train_scores).argmin(0)
test_pred = torch.stack(test_scores).argmin(0)
if return_pred:
return train_pred.numpy(), test_pred.numpy()
train_acc = compute_accuracy(classes[train_pred], train_labels.numpy())
test_acc = compute_accuracy(classes[test_pred], test_labels.numpy())
print('SVD: {}, {}'.format(train_acc, test_acc))
return train_acc, test_acc
def nearsub_pca(train_features, train_labels, test_features, test_labels, num_classes, n_comp=10):
scores_pca = []
classes = np.arange(num_classes)
features_sort, _ = utils.sort_dataset(train_features, train_labels, classes=classes, stack=False)
fd = features_sort[0].shape[1]
if n_comp >= fd:
n_comp = fd - 1
for j in np.arange(len(classes)):
pca = PCA(n_components=n_comp).fit(features_sort[j])
pca_subspace = pca.components_.T
mean = np.mean(features_sort[j], axis=0)
pca_j = (np.eye(fd) - pca_subspace @ pca_subspace.T) \
@ (test_features - mean).T
score_pca_j = np.linalg.norm(pca_j, ord=2, axis=0)
scores_pca.append(score_pca_j)
test_predict_pca = np.argmin(scores_pca, axis=0)
acc_pca = compute_accuracy(classes[test_predict_pca], test_labels)
print('PCA: {}'.format(acc_pca))
return acc_pca
def argmax(train_features, train_labels, test_features, test_labels):
train_pred = train_features.argmax(1)
train_acc = compute_accuracy(train_pred, train_labels)
test_pred = test_features.argmax(1)
test_acc = compute_accuracy(test_pred, test_labels)
return train_acc, test_acc
def compute_accuracy(y_pred, y_true):
"""Compute accuracy by counting correct classification. """
assert y_pred.shape == y_true.shape
if type(y_pred) == torch.Tensor:
n_wrong = torch.count_nonzero(y_pred - y_true).item()
elif type(y_pred) == np.ndarray:
n_wrong = np.count_nonzero(y_pred - y_true)
else:
raise TypeError("Not Tensor nor Array type.")
n_samples = len(y_pred)
return 1 - n_wrong / n_samples
def baseline(train_features, train_labels, test_features, test_labels):
test_models = {'log_l2': SGDClassifier(loss='log', max_iter=10000, random_state=42),
'SVM_linear': LinearSVC(max_iter=10000, random_state=42),
'SVM_RBF': SVC(kernel='rbf', random_state=42),
'DecisionTree': DecisionTreeClassifier(),
'RandomForrest': RandomForestClassifier()}
for model_name in test_models:
test_model = test_models[model_name]
test_model.fit(train_features, train_labels)
score = test_model.score(test_features, test_labels)
print(f"{model_name}: {score}")
def majority_vote(pred, true):
pred_majority = sps.mode(pred, axis=0)[0].squeeze()
return compute_accuracy(pred_majority, true)