forked from yunjey/stargan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
733 lines (609 loc) · 29.8 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import time
import datetime
from torch.autograd import grad
from torch.autograd import Variable
from torchvision.utils import save_image
from torchvision import transforms
from model import Generator
from model import Discriminator
from PIL import Image
class Solver(object):
def __init__(self, celebA_loader, rafd_loader, config):
# Data loader
self.celebA_loader = celebA_loader
self.rafd_loader = rafd_loader
# Model hyper-parameters
self.c_dim = config.c_dim
self.c2_dim = config.c2_dim
self.image_size = config.image_size
self.g_conv_dim = config.g_conv_dim
self.d_conv_dim = config.d_conv_dim
self.g_repeat_num = config.g_repeat_num
self.d_repeat_num = config.d_repeat_num
self.d_train_repeat = config.d_train_repeat
# Hyper-parameteres
self.lambda_cls = config.lambda_cls
self.lambda_rec = config.lambda_rec
self.lambda_gp = config.lambda_gp
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.beta1 = config.beta1
self.beta2 = config.beta2
# Training settings
self.dataset = config.dataset
self.num_epochs = config.num_epochs
self.num_epochs_decay = config.num_epochs_decay
self.num_iters = config.num_iters
self.num_iters_decay = config.num_iters_decay
self.batch_size = config.batch_size
self.use_tensorboard = config.use_tensorboard
self.pretrained_model = config.pretrained_model
# Test settings
self.test_model = config.test_model
# Path
self.log_path = config.log_path
self.sample_path = config.sample_path
self.model_save_path = config.model_save_path
self.result_path = config.result_path
# Step size
self.log_step = config.log_step
self.sample_step = config.sample_step
self.model_save_step = config.model_save_step
# Build tensorboard if use
self.build_model()
if self.use_tensorboard:
self.build_tensorboard()
# Start with trained model
if self.pretrained_model:
self.load_pretrained_model()
def build_model(self):
# Define a generator and a discriminator
if self.dataset == 'Both':
self.G = Generator(self.g_conv_dim, self.c_dim+self.c2_dim+2, self.g_repeat_num) # 2 for mask vector
self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim+self.c2_dim, self.d_repeat_num)
else:
self.G = Generator(self.g_conv_dim, self.c_dim, self.g_repeat_num)
self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim, self.d_repeat_num)
# Optimizers
self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2])
# Print networks
self.print_network(self.G, 'G')
self.print_network(self.D, 'D')
if torch.cuda.is_available():
self.G.cuda()
self.D.cuda()
def print_network(self, model, name):
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(name)
print(model)
print("The number of parameters: {}".format(num_params))
def load_pretrained_model(self):
self.G.load_state_dict(torch.load(os.path.join(
self.model_save_path, '{}_G.pth'.format(self.pretrained_model))))
self.D.load_state_dict(torch.load(os.path.join(
self.model_save_path, '{}_D.pth'.format(self.pretrained_model))))
print('loaded trained models (step: {})..!'.format(self.pretrained_model))
def build_tensorboard(self):
from logger import Logger
self.logger = Logger(self.log_path)
def update_lr(self, g_lr, d_lr):
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
def reset_grad(self):
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
def to_var(self, x, volatile=False):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, volatile=volatile)
def denorm(self, x):
out = (x + 1) / 2
return out.clamp_(0, 1)
def threshold(self, x):
x = x.clone()
x[x >= 0.5] = 1
x[x < 0.5] = 0
return x
def compute_accuracy(self, x, y, dataset):
if dataset == 'CelebA':
x = F.sigmoid(x)
predicted = self.threshold(x)
correct = (predicted == y).float()
accuracy = torch.mean(correct, dim=0) * 100.0
else:
_, predicted = torch.max(x, dim=1)
correct = (predicted == y).float()
accuracy = torch.mean(correct) * 100.0
return accuracy
def one_hot(self, labels, dim):
"""Convert label indices to one-hot vector"""
batch_size = labels.size(0)
out = torch.zeros(batch_size, dim)
out[np.arange(batch_size), labels.long()] = 1
return out
def make_celeb_labels(self, real_c):
"""Generate domain labels for CelebA for debugging/testing.
if dataset == 'CelebA':
return single and multiple attribute changes
elif dataset == 'Both':
return single attribute changes
"""
y = [torch.FloatTensor([1, 0, 0]), # black hair
torch.FloatTensor([0, 1, 0]), # blond hair
torch.FloatTensor([0, 0, 1])] # brown hair
fixed_c_list = []
# single attribute transfer
for i in range(self.c_dim):
fixed_c = real_c.clone()
for c in fixed_c:
if i < 3:
c[:3] = y[i]
else:
c[i] = 0 if c[i] == 1 else 1 # opposite value
fixed_c_list.append(self.to_var(fixed_c, volatile=True))
# multi-attribute transfer (H+G, H+A, G+A, H+G+A)
if self.dataset == 'CelebA':
for i in range(4):
fixed_c = real_c.clone()
for c in fixed_c:
if i in [0, 1, 3]: # Hair color to brown
c[:3] = y[2]
if i in [0, 2, 3]: # Gender
c[3] = 0 if c[3] == 1 else 1
if i in [1, 2, 3]: # Aged
c[4] = 0 if c[4] == 1 else 1
fixed_c_list.append(self.to_var(fixed_c, volatile=True))
return fixed_c_list
def train(self):
"""Train StarGAN within a single dataset."""
# Set dataloader
if self.dataset == 'CelebA':
self.data_loader = self.celebA_loader
else:
self.data_loader = self.rafd_loader
# The number of iterations per epoch
iters_per_epoch = len(self.data_loader)
fixed_x = []
real_c = []
for i, (images, labels) in enumerate(self.data_loader):
fixed_x.append(images)
real_c.append(labels)
if i == 3:
break
# Fixed inputs and target domain labels for debugging
fixed_x = torch.cat(fixed_x, dim=0)
fixed_x = self.to_var(fixed_x, volatile=True)
real_c = torch.cat(real_c, dim=0)
if self.dataset == 'CelebA':
fixed_c_list = self.make_celeb_labels(real_c)
elif self.dataset == 'RaFD':
fixed_c_list = []
for i in range(self.c_dim):
fixed_c = self.one_hot(torch.ones(fixed_x.size(0)) * i, self.c_dim)
fixed_c_list.append(self.to_var(fixed_c, volatile=True))
# lr cache for decaying
g_lr = self.g_lr
d_lr = self.d_lr
# Start with trained model if exists
if self.pretrained_model:
start = int(self.pretrained_model.split('_')[0])
else:
start = 0
# Start training
start_time = time.time()
for e in range(start, self.num_epochs):
for i, (real_x, real_label) in enumerate(self.data_loader):
# Generat fake labels randomly (target domain labels)
rand_idx = torch.randperm(real_label.size(0))
fake_label = real_label[rand_idx]
if self.dataset == 'CelebA':
real_c = real_label.clone()
fake_c = fake_label.clone()
else:
real_c = self.one_hot(real_label, self.c_dim)
fake_c = self.one_hot(fake_label, self.c_dim)
# Convert tensor to variable
real_x = self.to_var(real_x)
real_c = self.to_var(real_c) # input for the generator
fake_c = self.to_var(fake_c)
real_label = self.to_var(real_label) # this is same as real_c if dataset == 'CelebA'
fake_label = self.to_var(fake_label)
# ================== Train D ================== #
# Compute loss with real images
out_src, out_cls = self.D(real_x)
d_loss_real = - torch.mean(out_src)
if self.dataset == 'CelebA':
d_loss_cls = F.binary_cross_entropy_with_logits(
out_cls, real_label, size_average=False) / real_x.size(0)
else:
d_loss_cls = F.cross_entropy(out_cls, real_label)
# Compute classification accuracy of the discriminator
if (i+1) % self.log_step == 0:
accuracies = self.compute_accuracy(out_cls, real_label, self.dataset)
log = ["{:.2f}".format(acc) for acc in accuracies.data.cpu().numpy()]
if self.dataset == 'CelebA':
print('Classification Acc (Black/Blond/Brown/Gender/Aged): ', end='')
else:
print('Classification Acc (8 emotional expressions): ', end='')
print(log)
# Compute loss with fake images
fake_x = self.G(real_x, fake_c)
fake_x = Variable(fake_x.data)
out_src, out_cls = self.D(fake_x)
d_loss_fake = torch.mean(out_src)
# Backward + Optimize
d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Compute gradient penalty
alpha = torch.rand(real_x.size(0), 1, 1, 1).cuda().expand_as(real_x)
interpolated = Variable(alpha * real_x.data + (1 - alpha) * fake_x.data, requires_grad=True)
out, out_cls = self.D(interpolated)
grad = torch.autograd.grad(outputs=out,
inputs=interpolated,
grad_outputs=torch.ones(out.size()).cuda(),
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
grad = grad.view(grad.size(0), -1)
grad_l2norm = torch.sqrt(torch.sum(grad ** 2, dim=1))
d_loss_gp = torch.mean((grad_l2norm - 1)**2)
# Backward + Optimize
d_loss = self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Logging
loss = {}
loss['D/loss_real'] = d_loss_real.data[0]
loss['D/loss_fake'] = d_loss_fake.data[0]
loss['D/loss_cls'] = d_loss_cls.data[0]
loss['D/loss_gp'] = d_loss_gp.data[0]
# ================== Train G ================== #
if (i+1) % self.d_train_repeat == 0:
# Original-to-target and target-to-original domain
fake_x = self.G(real_x, fake_c)
rec_x = self.G(fake_x, real_c)
# Compute losses
out_src, out_cls = self.D(fake_x)
g_loss_fake = - torch.mean(out_src)
g_loss_rec = torch.mean(torch.abs(real_x - rec_x))
if self.dataset == 'CelebA':
g_loss_cls = F.binary_cross_entropy_with_logits(
out_cls, fake_label, size_average=False) / fake_x.size(0)
else:
g_loss_cls = F.cross_entropy(out_cls, fake_label)
# Backward + Optimize
g_loss = g_loss_fake + self.lambda_rec * g_loss_rec + self.lambda_cls * g_loss_cls
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging
loss['G/loss_fake'] = g_loss_fake.data[0]
loss['G/loss_rec'] = g_loss_rec.data[0]
loss['G/loss_cls'] = g_loss_cls.data[0]
# Print out log info
if (i+1) % self.log_step == 0:
elapsed = time.time() - start_time
elapsed = str(datetime.timedelta(seconds=elapsed))
log = "Elapsed [{}], Epoch [{}/{}], Iter [{}/{}]".format(
elapsed, e+1, self.num_epochs, i+1, iters_per_epoch)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
if self.use_tensorboard:
for tag, value in loss.items():
self.logger.scalar_summary(tag, value, e * iters_per_epoch + i + 1)
# Translate fixed images for debugging
if (i+1) % self.sample_step == 0:
fake_image_list = [fixed_x]
for fixed_c in fixed_c_list:
fake_image_list.append(self.G(fixed_x, fixed_c))
fake_images = torch.cat(fake_image_list, dim=3)
save_image(self.denorm(fake_images.data),
os.path.join(self.sample_path, '{}_{}_fake.png'.format(e+1, i+1)),nrow=1, padding=0)
print('Translated images and saved into {}..!'.format(self.sample_path))
# Save model checkpoints
if (i+1) % self.model_save_step == 0:
torch.save(self.G.state_dict(),
os.path.join(self.model_save_path, '{}_{}_G.pth'.format(e+1, i+1)))
torch.save(self.D.state_dict(),
os.path.join(self.model_save_path, '{}_{}_D.pth'.format(e+1, i+1)))
# Decay learning rate
if (e+1) > (self.num_epochs - self.num_epochs_decay):
g_lr -= (self.g_lr / float(self.num_epochs_decay))
d_lr -= (self.d_lr / float(self.num_epochs_decay))
self.update_lr(g_lr, d_lr)
print ('Decay learning rate to g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
def train_multi(self):
"""Train StarGAN with multiple datasets.
In the code below, 1 is related to CelebA and 2 is releated to RaFD.
"""
# Fixed imagse and labels for debugging
fixed_x = []
real_c = []
for i, (images, labels) in enumerate(self.celebA_loader):
fixed_x.append(images)
real_c.append(labels)
if i == 2:
break
fixed_x = torch.cat(fixed_x, dim=0)
fixed_x = self.to_var(fixed_x, volatile=True)
real_c = torch.cat(real_c, dim=0)
fixed_c1_list = self.make_celeb_labels(real_c)
fixed_c2_list = []
for i in range(self.c2_dim):
fixed_c = self.one_hot(torch.ones(fixed_x.size(0)) * i, self.c2_dim)
fixed_c2_list.append(self.to_var(fixed_c, volatile=True))
fixed_zero1 = self.to_var(torch.zeros(fixed_x.size(0), self.c2_dim)) # zero vector when training with CelebA
fixed_mask1 = self.to_var(self.one_hot(torch.zeros(fixed_x.size(0)), 2)) # mask vector: [1, 0]
fixed_zero2 = self.to_var(torch.zeros(fixed_x.size(0), self.c_dim)) # zero vector when training with RaFD
fixed_mask2 = self.to_var(self.one_hot(torch.ones(fixed_x.size(0)), 2)) # mask vector: [0, 1]
# lr cache for decaying
g_lr = self.g_lr
d_lr = self.d_lr
# data iterator
data_iter1 = iter(self.celebA_loader)
data_iter2 = iter(self.rafd_loader)
# Start with trained model
if self.pretrained_model:
start = int(self.pretrained_model) + 1
else:
start = 0
# # Start training
start_time = time.time()
for i in range(start, self.num_iters):
# Fetch mini-batch images and labels
try:
real_x1, real_label1 = next(data_iter1)
except:
data_iter1 = iter(self.celebA_loader)
real_x1, real_label1 = next(data_iter1)
try:
real_x2, real_label2 = next(data_iter2)
except:
data_iter2 = iter(self.rafd_loader)
real_x2, real_label2 = next(data_iter2)
# Generate fake labels randomly (target domain labels)
rand_idx = torch.randperm(real_label1.size(0))
fake_label1 = real_label1[rand_idx]
rand_idx = torch.randperm(real_label2.size(0))
fake_label2 = real_label2[rand_idx]
real_c1 = real_label1.clone()
fake_c1 = fake_label1.clone()
zero1 = torch.zeros(real_x1.size(0), self.c2_dim)
mask1 = self.one_hot(torch.zeros(real_x1.size(0)), 2)
real_c2 = self.one_hot(real_label2, self.c2_dim)
fake_c2 = self.one_hot(fake_label2, self.c2_dim)
zero2 = torch.zeros(real_x2.size(0), self.c_dim)
mask2 = self.one_hot(torch.ones(real_x2.size(0)), 2)
# Convert tensor to variable
real_x1 = self.to_var(real_x1)
real_c1 = self.to_var(real_c1)
fake_c1 = self.to_var(fake_c1)
mask1 = self.to_var(mask1)
zero1 = self.to_var(zero1)
real_x2 = self.to_var(real_x2)
real_c2 = self.to_var(real_c2)
fake_c2 = self.to_var(fake_c2)
mask2 = self.to_var(mask2)
zero2 = self.to_var(zero2)
real_label1 = self.to_var(real_label1)
fake_label1 = self.to_var(fake_label1)
real_label2 = self.to_var(real_label2)
fake_label2 = self.to_var(fake_label2)
# ================== Train D ================== #
# Real images (CelebA)
out_real, out_cls = self.D(real_x1)
out_cls1 = out_cls[:, :self.c_dim] # celebA part
d_loss_real = - torch.mean(out_real)
d_loss_cls = F.binary_cross_entropy_with_logits(out_cls1, real_label1, size_average=False) / real_x1.size(0)
# Real images (RaFD)
out_real, out_cls = self.D(real_x2)
out_cls2 = out_cls[:, self.c_dim:] # rafd part
d_loss_real += - torch.mean(out_real)
d_loss_cls += F.cross_entropy(out_cls2, real_label2)
# Compute classification accuracy of the discriminator
if (i+1) % self.log_step == 0:
accuracies = self.compute_accuracy(out_cls1, real_label1, 'CelebA')
log = ["{:.2f}".format(acc) for acc in accuracies.data.cpu().numpy()]
print('Classification Acc (Black/Blond/Brown/Gender/Aged): ', end='')
print(log)
accuracies = self.compute_accuracy(out_cls2, real_label2, 'RaFD')
log = ["{:.2f}".format(acc) for acc in accuracies.data.cpu().numpy()]
print('Classification Acc (8 emotional expressions): ', end='')
print(log)
# Fake images (CelebA)
fake_c = torch.cat([fake_c1, zero1, mask1], dim=1)
fake_x1 = self.G(real_x1, fake_c)
fake_x1 = Variable(fake_x1.data)
out_fake, _ = self.D(fake_x1)
d_loss_fake = torch.mean(out_fake)
# Fake images (RaFD)
fake_c = torch.cat([zero2, fake_c2, mask2], dim=1)
fake_x2 = self.G(real_x2, fake_c)
out_fake, _ = self.D(fake_x2)
d_loss_fake += torch.mean(out_fake)
# Backward + Optimize
d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Compute gradient penalty
if (i+1) % 2 == 0:
real_x = real_x1
fake_x = fake_x1
else:
real_x = real_x2
fake_x = fake_x2
alpha = torch.rand(real_x.size(0), 1, 1, 1).cuda().expand_as(real_x)
interpolated = Variable(alpha * real_x.data + (1 - alpha) * fake_x.data, requires_grad=True)
out, out_cls = self.D(interpolated)
if (i+1) % 2 == 0:
out_cls = out_cls[:, :self.c_dim] # CelebA
else:
out_cls = out_cls[:, self.c_dim:] # RaFD
grad = torch.autograd.grad(outputs=out,
inputs=interpolated,
grad_outputs=torch.ones(out.size()).cuda(),
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
grad = grad.view(grad.size(0), -1)
grad_l2norm = torch.sqrt(torch.sum(grad ** 2, dim=1))
d_loss_gp = torch.mean((grad_l2norm - 1)**2)
# Backward + Optimize
d_loss = self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Logging
loss = {}
loss['D/loss_real'] = d_loss_real.data[0]
loss['D/loss_fake'] = d_loss_fake.data[0]
loss['D/loss_cls'] = d_loss_cls.data[0]
loss['D/loss_gp'] = d_loss_gp.data[0]
# ================== Train G ================== #
if (i+1) % self.d_train_repeat == 0:
# Original-to-target and target-to-original domain (CelebA)
fake_c = torch.cat([fake_c1, zero1, mask1], dim=1)
real_c = torch.cat([real_c1, zero1, mask1], dim=1)
fake_x1 = self.G(real_x1, fake_c)
rec_x1 = self.G(fake_x1, real_c)
# Compute losses
out, out_cls = self.D(fake_x1)
out_cls1 = out_cls[:, :self.c_dim]
g_loss_fake = - torch.mean(out)
g_loss_rec = torch.mean(torch.abs(real_x1 - rec_x1))
g_loss_cls = F.binary_cross_entropy_with_logits(out_cls1, fake_label1, size_average=False) / fake_x1.size(0)
# Original-to-target and target-to-original domain (RaFD)
fake_c = torch.cat([zero2, fake_c2, mask2], dim=1)
real_c = torch.cat([zero2, real_c2, mask2], dim=1)
fake_x2 = self.G(real_x2, fake_c)
rec_x2 = self.G(fake_x2, real_c)
# Compute losses
out, out_cls = self.D(fake_x2)
out_cls2 = out_cls[:, self.c_dim:]
g_loss_fake += - torch.mean(out)
g_loss_rec += torch.mean(torch.abs(real_x2 - rec_x2))
g_loss_cls += F.cross_entropy(out_cls2, fake_label2)
# Backward + Optimize
g_loss = g_loss_fake + self.lambda_cls * g_loss_cls + self.lambda_rec * g_loss_rec
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging
loss['G/loss_fake'] = g_loss_fake.data[0]
loss['G/loss_cls'] = g_loss_cls.data[0]
loss['G/loss_rec'] = g_loss_rec.data[0]
# Print out log info
if (i+1) % self.log_step == 0:
elapsed = time.time() - start_time
elapsed = str(datetime.timedelta(seconds=elapsed))
log = "Elapsed [{}], Iter [{}/{}]".format(
elapsed, i+1, self.num_iters)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
if self.use_tensorboard:
for tag, value in loss.items():
self.logger.scalar_summary(tag, value, i+1)
# Translate the images (debugging)
if (i+1) % self.sample_step == 0:
fake_image_list = [fixed_x]
# Changing hair color, gender, and age
for j in range(self.c_dim):
fake_c = torch.cat([fixed_c1_list[j], fixed_zero1, fixed_mask1], dim=1)
fake_image_list.append(self.G(fixed_x, fake_c))
# Changing emotional expressions
for j in range(self.c2_dim):
fake_c = torch.cat([fixed_zero2, fixed_c2_list[j], fixed_mask2], dim=1)
fake_image_list.append(self.G(fixed_x, fake_c))
fake = torch.cat(fake_image_list, dim=3)
# Save the translated images
save_image(self.denorm(fake.data),
os.path.join(self.sample_path, '{}_fake.png'.format(i+1)), nrow=1, padding=0)
# Save model checkpoints
if (i+1) % self.model_save_step == 0:
torch.save(self.G.state_dict(),
os.path.join(self.model_save_path, '{}_G.pth'.format(i+1)))
torch.save(self.D.state_dict(),
os.path.join(self.model_save_path, '{}_D.pth'.format(i+1)))
# Decay learning rate
decay_step = 1000
if (i+1) > (self.num_iters - self.num_iters_decay) and (i+1) % decay_step==0:
g_lr -= (self.g_lr / float(self.num_iters_decay) * decay_step)
d_lr -= (self.d_lr / float(self.num_iters_decay) * decay_step)
self.update_lr(g_lr, d_lr)
print ('Decay learning rate to g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
def test(self):
"""Facial attribute transfer on CelebA or facial expression synthesis on RaFD."""
# Load trained parameters
G_path = os.path.join(self.model_save_path, '{}_G.pth'.format(self.test_model))
self.G.load_state_dict(torch.load(G_path))
self.G.eval()
if self.dataset == 'CelebA':
data_loader = self.celebA_loader
else:
data_loader = self.rafd_loader
for i, (real_x, org_c) in enumerate(data_loader):
real_x = self.to_var(real_x, volatile=True)
if self.dataset == 'CelebA':
target_c_list = self.make_celeb_labels(org_c)
else:
target_c_list = []
for j in range(self.c_dim):
target_c = self.one_hot(torch.ones(real_x.size(0)) * j, self.c_dim)
target_c_list.append(self.to_var(target_c, volatile=True))
# Start translations
fake_image_list = [real_x]
for target_c in target_c_list:
fake_image_list.append(self.G(real_x, target_c))
fake_images = torch.cat(fake_image_list, dim=3)
save_path = os.path.join(self.result_path, '{}_fake.png'.format(i+1))
save_image(self.denorm(fake_images.data), save_path, nrow=1, padding=0)
print('Translated test images and saved into "{}"..!'.format(save_path))
def test_multi(self):
"""Facial attribute transfer and expression synthesis on CelebA."""
# Load trained parameters
G_path = os.path.join(self.model_save_path, '{}_G.pth'.format(self.test_model))
self.G.load_state_dict(torch.load(G_path))
self.G.eval()
for i, (real_x, org_c) in enumerate(self.celebA_loader):
# Prepare input images and target domain labels
real_x = self.to_var(real_x, volatile=True)
target_c1_list = self.make_celeb_labels(org_c)
target_c2_list = []
for j in range(self.c2_dim):
target_c = self.one_hot(torch.ones(real_x.size(0)) * j, self.c2_dim)
target_c2_list.append(self.to_var(target_c, volatile=True))
# Zero vectors and mask vectors
zero1 = self.to_var(torch.zeros(real_x.size(0), self.c2_dim)) # zero vector for rafd expressions
mask1 = self.to_var(self.one_hot(torch.zeros(real_x.size(0)), 2)) # mask vector: [1, 0]
zero2 = self.to_var(torch.zeros(real_x.size(0), self.c_dim)) # zero vector for celebA attributes
mask2 = self.to_var(self.one_hot(torch.ones(real_x.size(0)), 2)) # mask vector: [0, 1]
# Changing hair color, gender, and age
fake_image_list = [real_x]
for j in range(self.c_dim):
target_c = torch.cat([target_c1_list[j], zero1, mask1], dim=1)
fake_image_list.append(self.G(real_x, target_c))
# Changing emotional expressions
for j in range(self.c2_dim):
target_c = torch.cat([zero2, target_c2_list[j], mask2], dim=1)
fake_image_list.append(self.G(real_x, target_c))
fake_images = torch.cat(fake_image_list, dim=3)
# Save the translated images
save_path = os.path.join(self.result_path, '{}_fake.png'.format(i+1))
save_image(self.denorm(fake_images.data), save_path, nrow=1, padding=0)
print('Translated test images and saved into "{}"..!'.format(save_path))