forked from diefimov/santander_2016
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxgboost_marios_7_2.py
executable file
·260 lines (193 loc) · 10.4 KB
/
xgboost_marios_7_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import numpy as np
from sklearn.externals import joblib
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.metrics import roc_auc_score
import XGBoostClassifier as xg
from collections import defaultdict
def loadcolumn(filename,col=4, skip=1, floats=True):
pred=[]
op=open(filename,'r')
if skip==1:
op.readline() #header
for line in op:
line=line.replace('\n','')
sps=line.split(',')
#load always the last columns
if floats:
pred.append(float(sps[col]))
else :
pred.append(str(sps[col]))
op.close()
return np.array(pred)
def load_datas(filename):
return joblib.load(filename)
def printfile(X, filename):
joblib.dump((X), filename)
def printfilcsve(X, filename, headers):
np.savetxt(filename,X, header=headers)
def load_ids(id_file, cols=20):
verybiglist=[]
for s in range(0,cols):
idss=loadcolumn(id_file,col=s, skip=1, floats=True)
id_list=[ [] ,[] , [], [] , []]
id_dict=[ defaultdict(int) ,defaultdict(int) , defaultdict(int), defaultdict(int) , defaultdict(int)]
for g in range(0,len(idss)):
id_list[int(idss[g])].append(g)
id_dict[int(idss[g])][g]=1
biglist=[]
for k in range(5):
training_ids=[s for s in range(0,len(idss)) if s not in id_dict[k] ]
biglist.append([training_ids,id_list[k] ])
print(len(biglist), len(biglist[0]))
verybiglist.append(biglist)
return verybiglist
def all_load_vecorizerr(tr,te,drop=["ind_var2_0","ind_var2","ind_var27_0","ind_var28_0","ind_var28","ind_var27",
"ind_var41","ind_var46_0","ind_var46","num_var27_0","num_var28_0","num_var28","num_var27","num_var41","num_var46_0",
"num_var46","saldo_var28","saldo_var27","saldo_var41","saldo_var46","imp_amort_var18_hace3","imp_amort_var34_hace3",
"imp_reemb_var13_hace3","imp_reemb_var33_hace3","imp_trasp_var17_out_hace3","imp_trasp_var33_out_hace3",
"num_var2_0_ult1","num_var2_ult1","num_reemb_var13_hace3","num_reemb_var33_hace3","num_trasp_var17_out_hace3",
"num_trasp_var33_out_hace3","saldo_var2_ult1","saldo_medio_var13_medio_hace3","ind_var6_0","ind_var6",
"ind_var13_medio_0","ind_var18_0","ind_var26_0","ind_var25_0","ind_var32_0","ind_var34_0","ind_var37_0",
"ind_var40","num_var6_0","num_var6","num_var13_medio_0","num_var18_0","num_var26_0","num_var25_0","num_var32_0",
"num_var34_0","num_var37_0","num_var40","saldo_var6","saldo_var13_medio","delta_imp_reemb_var13_1y3",
"delta_imp_reemb_var17_1y3","delta_imp_reemb_var33_1y3","delta_imp_trasp_var17_in_1y3","delta_imp_trasp_var17_out_1y3",
"delta_imp_trasp_var33_in_1y3","delta_imp_trasp_var33_out_1y3"]):
train = pd.read_csv(tr, sep=',',quotechar='"')
test = pd.read_csv(te, sep=',',quotechar='"')
train.drop('ID', axis=1, inplace=True)
train.drop('TARGET', axis=1, inplace=True)
test.drop('ID', axis=1, inplace=True)
for name in drop:
train.drop(name, axis=1, inplace=True)
test.drop(name, axis=1, inplace=True)
train['zerocount'] = train.apply(lambda x: np.sum(x == 0), axis=1)
test['zerocount'] = test.apply(lambda x: np.sum(x == 0), axis=1)
train['var38'].replace(117310.979016494, -1.0, inplace=True)
test ['var38'].replace(117310.979016494, -1.0, inplace=True)
train_s = train
test_s = test
result = pd.concat([test_s,train_s])
#test_s.drop('id', axis=1, inplace=True)
result=result.T.to_dict().values()
train = train_s.T.to_dict().values()
test = test_s.T.to_dict().values()
vec = DictVectorizer()
vec.fit(result)
train = vec.transform(train)
test = vec.transform(test)
print train.shape
print test.shape
return train,test
def bagged_set(X_t,y_c,model, seed, estimators, xt, update_seed=True):
# create array object to hold predictions
baggedpred=[ 0.0 for d in range(0, (xt.shape[0]))]
#loop for as many times as we want bags
for n in range (0, estimators):
#shuff;e first, aids in increasing variance and forces different results
#X_t,y_c=shuffle(Xs,ys, random_state=seed+n)
if update_seed: # update seed if requested, to give a slightly different model
model.set_params(random_state=seed + n)
model.fit(X_t,y_c) # fit model0.0917411475506
preds=model.predict_proba(xt)[:,1] # predict probabilities
# update bag's array
for j in range (0, (xt.shape[0])):
baggedpred[j]+=preds[j]
#print("done bag %d mean %f " % (n,meanthis))
# divide with number of bags to create an average estimate
for j in range (0, len(baggedpred)):
baggedpred[j]/=float(estimators)
# return probabilities
return np.array(baggedpred)
def main():
load_data=True
metafolder_train="data/output/train/"
metafolder_test="data/output/test/"
input_folder="data/input/"
feature_folder="data/output/features/"
SEED=15
outset="xgboost_marios_7_2" # predic of all files
number_of_folds=5 # repeat the CV procedure 10 times to get more precise results
######### Load files ############
y=loadcolumn(input_folder+ "train.csv",col=370, skip=1, floats=True)
ids=loadcolumn(input_folder+ "test.csv",col=0, skip=1, floats=True)
idstrain=loadcolumn(input_folder+ "train.csv",col=0, skip=1, floats=True)
keepfold=[0 for k in range(len(y))]
if load_data:
X,X_test=all_load_vecorizerr(input_folder+'train.csv',input_folder+'test.csv')
printfile(X,"Xvector.pkl")
printfile(X_test,"Xtestvector.pkl")
X=load_datas("Xvector.pkl").toarray()
X_test=load_datas("Xtestvector.pkl").toarray()
tsn_features=(np.loadtxt(feature_folder+ "tsne_feats.csv", delimiter=",", skiprows=1, usecols=[1,2]))
tsn_features_train=tsn_features[:X.shape[0]]
tsn_features_test=tsn_features[X.shape[0]:tsn_features.shape[0]]
print tsn_features_train.shape
print tsn_features_test.shape
X=np.column_stack((X,tsn_features_train))
X_test=np.column_stack((X_test,tsn_features_test))
print X.shape
print X_test.shape
kmeans_feats=(np.loadtxt(feature_folder+"kmeans_feats.csv", delimiter=",", skiprows=1, usecols=[1,2,3,4,5,6,7,8,9]))
kmeans_feats_train=kmeans_feats[:X.shape[0]]
kmeans_feats_test=kmeans_feats[X.shape[0]:tsn_features.shape[0]]
print kmeans_feats_train.shape
print kmeans_feats_test.shape
X=np.column_stack((X,kmeans_feats_train))
X_test=np.column_stack((X_test,kmeans_feats_test))
print X.shape
print X_test.shape
#model to use
model=xg.XGBoostClassifier(num_round=100000 ,nthread=62, eta=0.0001, gamma=0.1,max_depth=5, min_child_weight=1, subsample=0.9,
colsample_bytree=0.45,objective='binary:logistic',seed=1)
#Create Arrays for meta
train_stacker=[ 0.0 for k in range (0,(X.shape[0])) ]
test_stacker=[0.0 for k in range (0,(X_test.shape[0]))]
# CHECK EVerything in five..it could be more efficient
#create target variable
print("kfolder")
#load the 20-fold ids.
kfolders=load_ids(input_folder+"5fold_20times.csv")
printfile(kfolders,"kfolder.pkl")
fcount=0
for kfolder in kfolders:
mean_kapa = 0.0
i=0 # iterator counter
print ("starting cross validation with %d kfolds " % (number_of_folds))
if number_of_folds>0:
for train_index, test_index in kfolder:
# creaning and validation sets
X_train, X_cv = X[train_index], X[test_index]
y_train, y_cv = np.array(y)[train_index], np.array(y)[test_index]
print ("folder %d train size: %d. test size: %d, cols: %d " % (fcount, (X_train.shape[0]) ,(X_cv.shape[0]) ,(X_train.shape[1]) ))
preds=bagged_set(X_train,y_train,model, SEED, 3, X_cv, update_seed=True)
# compute Loglikelihood metric for this CV fold
#scalepreds(preds)
kapa = roc_auc_score(y_cv,preds)
print "folder %d size train: %d size cv: %d AUC (fold %d/%d): %f" % (fcount,(X_train.shape[0]), (X_cv.shape[0]), i + 1, number_of_folds, kapa)
mean_kapa += kapa
#save the results
no=0
for real_index in test_index:
train_stacker[real_index]+=(preds[no])
keepfold[real_index]=i
no+=1
i+=1
fcount+=1
print "=============================================================================================="
for u in range(0,len(train_stacker)):
train_stacker[u]/=float(len(kfolders))
grand_auc=roc_auc_score(y, train_stacker)
print (" Grand AUC: %f" % (grand_auc) )
if (number_of_folds)>0:
mean_kapa/=number_of_folds
print (" printing train datasets ")
printfilcsve(np.column_stack((np.array(idstrain),np.array(train_stacker))), metafolder_train+ outset + ".train.csv","ID,TARGET")
print (" making test predictions ")
preds=bagged_set(X, y,model, SEED, 5, X_test, update_seed=True)
for pr in range (0,len(preds)):
test_stacker[pr]=(preds[pr])
preds=np.array(preds)
printfilcsve(np.column_stack((np.array(ids),np.array(test_stacker))), metafolder_test+ outset + ".test.csv","ID,TARGET")
if __name__=="__main__":
main()