-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembed_dataset.py
83 lines (62 loc) · 2.54 KB
/
embed_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""Pytorch Datasets for text features."""
from typing import Any
from typing import Dict
from typing import Sequence
from typing import Union
import numpy as np
try:
from transformers import AutoTokenizer
except:
import warnings
warnings.warn("'transformers' - package isn't installed")
class BertDataset:
"""Dataset class with transformers tokenization.
Class for preparing transformers input.
Args:
sentences: List of tokenized sentences.
max_length: Max sentence length.
model_name: Name of transformer model.
**kwargs: Other.
"""
def __init__(self, sentences: Sequence[str], max_length: int, model_name: str, **kwargs: Any):
self.sentences = sentences
self.max_length = max_length
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
def __getitem__(self, idx: int) -> Dict[str, np.ndarray]:
sent = self.sentences[idx]
_split = sent.split("[SEP]")
sent = _split if len(_split) == 2 else (sent,)
data = self.tokenizer.encode_plus(
*sent, add_special_tokens=True, max_length=self.max_length, padding="max_length", truncation=True
)
return {i: np.array(data[i]) for i in data.keys()}
def __len__(self) -> int:
return len(self.sentences)
class EmbedDataset:
"""Dataset class for extracting word embeddings.
Class for transforming list of tokens to dict of embeddings and sentence length.
Args:
sentences: List of tokenized sentences.
embedding_model: word2vec, fasstext, etc.
Should have dict interface {<word>: <embedding>}.
max_length: Max sentence length.
embed_size: Size of embedding.
**kwargs: Not used.
"""
def __init__(self, sentences: Sequence[str], embedding_model: Dict, max_length: int, embed_size: int, **kwargs):
self.sentences = sentences
self.embedding_model = embedding_model
self.max_length = max_length
self.embed_size = embed_size
def __getitem__(self, idx: int) -> Dict[str, Union[Sequence, int]]:
result = np.zeros((self.max_length, self.embed_size))
length = 0
for word in self.sentences[idx]:
if word in self.embedding_model:
result[length, :] = self.embedding_model[word]
length += 1
if length >= self.max_length:
break
return {"text": result, "length": length if length > 0 else 1}
def __len__(self) -> int:
return len(self.sentences)