This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
straycat.py
720 lines (581 loc) · 23.7 KB
/
straycat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
import logging
logging.basicConfig(format='%(message)s', level=logging.INFO)
import sys
import os
import pyworld as world # Vocoder
import numpy as np # Numpy <3
from numba import njit, vectorize, float64, optional # JIT compilation stuff (and ufuncs)
import scipy.io.wavfile as wav # WAV read + write
import scipy.signal as signal # for filtering
import scipy.interpolate as interp # Interpolator for feats
import resampy # Resampler (as in sampling rate stuff)
import re
version = '0.2.0'
help_string = '''usage: straycat in_file out_file pitch velocity [flags] [offset] [length] [consonant] [cutoff] [volume] [modulation] [tempo] [pitch_string]
Resamples using the WORLD Vocoder.
arguments:
\tin_file\t\tPath to input file.
\tout_file\tPath to output file.
\tpitch\t\tThe pitch to render on.
\tvelocity\tThe consonant velocity of the render.
optional arguments:
\tflags\t\tThe flags of the render.
\toffset\t\tThe offset from the start of the render area of the sample. (default: 0)
\tlength\t\tThe length of the stretched area in milliseconds. (default: 1000)
\tconsonant\tThe unstretched area of the render in milliseconds. (default: 0)
\tcutoff\t\tThe cutoff from the end or from the offset for the render area of the sample. (default: 0)
\tvolume\t\tThe volume of the render in percentage. (default: 100)
\tmodulation\tThe pitch modulation of the render in percentage. (default: 0)
\ttempo\t\tThe tempo of the render. Needs to have a ! at the start. (default: !100)
\tpitch_string\tThe UTAU pitchbend parameter written in Base64 with RLE encoding. (default: AA)'''
notes = {'C' : 0, 'C#' : 1, 'D' : 2, 'D#' : 3, 'E' : 4, 'F' : 5, 'F#' : 6, 'G' : 7, 'G#' : 8, 'A' : 9, 'A#' : 10, 'B' : 11} # Note names lol
note_re = re.compile(r'([A-G]#?)(-?\d+)') # Note Regex for conversion
default_fs = 44100 # UTAU only really likes 44.1khz
fft_size = world.get_cheaptrick_fft_size(default_fs, world.default_f0_floor) # It's just 2048 but you know
cache_ext = '.sc.npz' # cache file extension
# Giving it better range
f0_floor = world.default_f0_floor
f0_ceil = 1760
# Flags
flags = ['fe', 'fl', 'fo', 'fv', 'fp', 've', 'vo', 'g', 't', 'A', 'B', 'G', 'P', 'S']
flag_re = '|'.join(flags)
flag_re = f'({flag_re})([+-]?\\d+)?'
flag_re = re.compile(flag_re)
# Utility functions
@vectorize([float64(float64, float64, float64)], nopython=True)
def smoothstep(edge0, edge1, x):
"""Smoothstep function from GLSL that works with numpy arrays."""
x = (x - edge0) / (edge1 - edge0)
if x < 0:
x = 0
elif x > 1:
x = 1
return 3*x*x - 2*x*x*x
@vectorize([float64(float64, float64, float64)], nopython=True)
def clip(x, x_min, x_max):
"""Clips function. Faster than np.clip somehow"""
if x < x_min:
return x_min
if x > x_max:
return x_max
return x
def highpass(x, fs=44100, cutoff=3000, order=1):
"""Butterworth highpass with doubled order because of sosfiltfilt."""
nyq = 0.5 * fs
cut = cutoff / nyq
sos = signal.butter(order, cut, btype='high', output='sos')
return signal.sosfiltfilt(sos, x)
def lowpass(x, fs=44100, cutoff=16000, order=1):
"""Butterworth lowpass with doubled order because of sosfiltfilt."""
nyq = 0.5 * fs
cut = cutoff / nyq
sos = signal.butter(order, cut, btype='low', output='sos')
return signal.sosfiltfilt(sos, x)
# Pitch string interpreter
def to_uint6(b64):
"""Convert one Base64 character to an unsigned integer.
Parameters
----------
b64 : str
The Base64 character.
Returns
-------
int
The equivalent of the Base64 character as an integer.
"""
c = ord(b64) # Convert based on ASCII mapping
if c >= 97:
return c - 71
elif c >= 65:
return c - 65
elif c >= 48:
return c + 4
elif c == 43:
return 62
elif c == 47:
return 63
else:
raise Exception
def to_int12(b64):
"""Converts two Base64 characters to a signed 12-bit integer.
Parameters
----------
b64 : str
The Base64 string.
Returns
-------
int
The equivalent of the Base64 characters as a signed 12-bit integer (-2047 to 2048)
"""
uint12 = to_uint6(b64[0]) << 6 | to_uint6(b64[1]) # Combined uint6 to uint12
if uint12 >> 11 & 1 == 1: # Check most significant bit to simulate two's complement
return uint12 - 4096
else:
return uint12
def to_int12_stream(b64):
"""Converts a Base64 string to a list of integers.
Parameters
----------
b64 : str
The Base64 string.
Returns
-------
list
The equivalent of the Base64 string if split every 12-bits and interpreted as a signed 12-bit integer.
"""
res = []
for i in range(0, len(b64), 2):
res.append(to_int12(b64[i:i+2]))
return res
def pitch_string_to_cents(x):
"""Converts UTAU's pitchbend argument to an ndarray representing the pitch offset in cents.
Parameters
----------
x : str
The pitchbend argument.
Returns
-------
ndarray
The pitchbend argument as pitch offset in cents.
"""
pitch = x.split('#') # Split RLE Encoding
res = []
for i in range(0, len(pitch), 2):
# Go through each pair
p = pitch[i:i+2]
if len(p) == 2:
# Decode pitch string and extend RLE
pitch_str, rle = p
res.extend(to_int12_stream(pitch_str))
res.extend([res[-1]] * int(rle))
else:
# Decode last pitch string without RLE if it exists
res.extend(to_int12_stream(p[0]))
res = np.array(res, dtype=np.int32)
if np.all(res == res[0]):
return np.zeros(res.shape)
else:
return np.concatenate([res, np.zeros(1)])
# Pitch conversion
def note_to_midi(x):
"""Note name to MIDI note number."""
note, octave = note_re.match(x).group(1, 2)
octave = int(octave) + 1
return octave * 12 + notes[note]
def midi_to_hz(x):
"""MIDI note number to Hertz using equal temperament. A4 = 440 Hz."""
return 440 * np.exp2((x - 69) / 12)
##def hz_to_midi(x):
## return 12 * np.log2(x / 440) + 69
# WAV read/write
def read_wav(loc):
"""Read WAV file that remaps unsigned integer WAV files to [-1, 1] range, resamples to 44.1kHz if needed, and mixes down to mono if needed. May fail on unsigned integer types.
Parameters
----------
loc : str or file
Input WAV file.
Returns
-------
ndarray
Data read from WAV file remapped to [-1, 1] and in 44.1kHz
"""
fs, x = wav.read(loc)
# Check integer typing
xtype = x.dtype
int_type = np.issubdtype(xtype, np.integer)
if int_type:
# Divide by max integer
info = np.iinfo(xtype)
x = x / info.max
if len(x.shape) == 2:
# Average all channels... Probably not too good for formats bigger than 2.0
x = np.mean(x, axis=1)
if fs != default_fs:
x = resampy.resample(x, fs, default_fs)
return x
def save_wav(loc, x):
"""Save data into a WAV file. Assumes data is in 44.1kHz and in [-1, 1] range.
Parameters
----------
loc : str or file
Output WAV file.
x : ndarray
Audio data in 44.1kHz within [-1, 1].
Returns
-------
None
"""
info = np.iinfo(np.int16)
x = clip(x * info.max, info.min, info.max).astype(np.int16)
wav.write(loc, default_fs, x)
# Processing WORLD things
@njit(float64(float64[:], optional(float64), optional(float64)))
def _jit_base_frq(f0, f0_min, f0_max):
q = 0
avg_frq = 0
tally = 0
N = len(f0)
if f0_min is None:
f0_min = f0_floor
if f0_max is None:
f0_max = f0_ceil
for i in range(N):
if f0[i] >= f0_min and f0[i] <= f0_max:
if i < 1:
q = f0[i+1] - f0[i]
elif i == N - 1:
q = f0[i] - f0[i-1]
else:
q = (f0[i+1] - f0[i-1]) / 2
weight = 2 ** (-q * q)
avg_frq += f0[i] * weight
tally += weight
if tally > 0:
avg_frq /= tally
return avg_frq
def base_frq(f0, f0_min=None, f0_max=None):
"""Get average F0 with a stronger bias on flatter areas.
Parameters
----------
f0 : list or ndarray
Array of F0 values.
f0_min : float, optional
Lower F0 limit.
f0_max : float, optional
Upper F0 limit.
Returns
-------
float
Average F0.
"""
return _jit_base_frq(f0, f0_min, f0_max)
class Resampler:
"""
A class for the UTAU resampling process.
Attributes
----------
in_file : str
Path to input file.
out_file : str
Path to output file.
pitch : str
The pitch of the note.
velocity : str or float
The consonant velocity of the note.
flags : str
The flags of the note.
offset : str or float
The offset from the start for the render area of the sample.
length : str or int
The length of the stretched area in milliseconds.
consonant : str or float
The unstretched area of the render.
cutoff : str or float
The cutoff from the end or from the offset for the render area of the sample.
volume : str or float
The volume of the note in percentage.
modulation : str or float
The modulation of the note in percentage.
tempo : str
The tempo of the note.
pitch_string : str
The UTAU pitchbend parameter.
Methods
-------
render(self):
The rendering workflow. Immediately starts when class is initialized.
get_features(self):
Gets the WORLD features either from a cached file or generating it if it doesn't exist.
generate_features(self, features_path):
Generates WORLD features and saves it for later.
resample(self, features):
Renders a WAV file using the passed WORLD features.
"""
def __init__(self, in_file, out_file, pitch, velocity, flags='', offset=0, length=1000, consonant=0, cutoff=0, volume=100, modulation=0, tempo='!100', pitch_string='AA'):
"""Initializes the renderer and immediately starts it.
Parameters
---------
in_file : str
Path to input file.
out_file : str
Path to output file.
pitch : str
The pitch of the note.
velocity : str or float
The consonant velocity of the note.
flags : str
The flags of the note.
offset : str or float
The offset from the start for the render area of the sample.
length : str or int
The length of the stretched area in milliseconds.
consonant : str or float
The unstretched area of the render.
cutoff : str or float
The cutoff from the end or from the offset for the render area of the sample.
volume : str or float
The volume of the note in percentage.
modulation : str or float
The modulation of the note in percentage.
tempo : str
The tempo of the note.
pitch_string : str
The UTAU pitchbend parameter.
"""
self.in_file = in_file
self.out_file = out_file
self.pitch = note_to_midi(pitch)
self.velocity = float(velocity)
self.flags = {k : int(v) if v else None for k, v in flag_re.findall(flags.replace('/', ''))}
self.offset = float(offset)
self.length = int(length)
self.consonant = float(consonant)
self.cutoff = float(cutoff)
self.volume = float(volume)
self.modulation = float(modulation)
self.tempo = float(tempo[1:])
self.pitchbend = pitch_string_to_cents(pitch_string)
self.render()
def render(self):
"""The rendering workflow. Immediately starts when class is initialized.
Parameters
----------
None
"""
features = self.get_features()
self.resample(features)
def get_features(self):
"""Gets the WORLD features either from a cached file or generating it if it doesn't exist.
Parameters
----------
None
Returns
-------
features : dict
A dictionary of the F0, MGC, BAP, and average F0.
"""
# Setup cache path file
loc, file = os.path.split(self.in_file)
fname, _ = os.path.splitext(file)
features_path = os.path.join(loc, fname + cache_ext)
features = None
if 'G' in self.flags.keys():
logging.info('G flag exists. Forcing feature generation.')
features = self.generate_features(features_path)
elif os.path.exists(features_path):
# Load if it exists
logging.info(f'Reading {fname}{cache_ext}.')
features = np.load(features_path)
else:
# Generate if not
logging.info(f'{fname}{cache_ext} not found. Generating features.')
features = self.generate_features(features_path)
return features
def generate_features(self, features_path):
"""Generates WORLD features and saves it for later.
Parameters
----------
features_path : str or file
The path for caching the features.
Returns
-------
features : dict
A dictionary of the F0, MGC, BAP, and average F0.
"""
x = read_wav(self.in_file)
logging.info('Generating F0.')
f0, t = world.harvest(x, default_fs, f0_floor=f0_floor, f0_ceil=f0_ceil)
base_f0 = base_frq(f0)
logging.info('Generating spectral envelope.')
sp = world.cheaptrick(x, f0, t, default_fs)
mgc = world.code_spectral_envelope(sp, default_fs, 64)
logging.info('Generating aperiodicity.')
ap = world.d4c(x, f0, t, default_fs, threshold=0.25)
bap = world.code_aperiodicity(ap, default_fs)
logging.info('Saving features.')
features = {'base' : base_f0, 'f0' : f0, 'mgc' : mgc, 'bap' : bap}
np.savez_compressed(features_path, **features)
return features
def resample(self, features):
"""Renders a WAV file using the passed WORLD features.
Parameters
----------
features : dict
A dictionary of the F0, MGC, BAP, and average F0.
Returns
-------
None
"""
if self.out_file == 'nul':
logging.info('Null output file. Skipping...')
return
# Convert percentages to decimal
vel = np.exp2(1 - self.velocity / 100) # convel is more a multiplier...
vol = self.volume / 100
mod = self.modulation / 100
logging.info('Decoding WORLD features.')
# Recalculate spectral envelope and aperiodicity
sp = world.decode_spectral_envelope(features['mgc'], default_fs, fft_size)
ap = world.decode_aperiodicity(features['bap'], default_fs, fft_size)
# Turn F0 to offset map for modulation
base_f0 = features['base']
f0 = features['f0']
f0[f0 == 0] = base_f0
f0_off = f0 - base_f0
# Calculate temporal positions
t_area = np.arange(len(f0)) * 0.005
logging.info('Calculating timing.') # use seconds instead of 5ms terms cuz someone gave me negative offsets </3
start = self.offset / 1000 # start time
end = self.cutoff / 1000 # end time
if self.cutoff < 0: # deal with relative end time
end = start - end
else:
end = t_area[-1] - end
con = start + self.consonant / 1000 # consonant
logging.info('Preparing interpolators.')
# Make interpolators to render new areas
f0_off_interp = interp.UnivariateSpline(t_area, f0_off, s=0, ext='const')
sp_interp = interp.Akima1DInterpolator(t_area, sp)
ap_interp = interp.Akima1DInterpolator(t_area, ap)
# Make new temporal positions array for stretching
t_consonant = np.linspace(start, con, num=int(vel * self.consonant / 5), endpoint=False) # temporal positions of the unstretched area. can be stretched because of velocity
# stretched area only needs to stretch if the length required is longer than the stretch area
length_req = self.length / 1000
stretch_length = end - con
if stretch_length > length_req:
con_idx = int(200 * con) # position of consonant in the temporal positions array ??
len_idx = int(200 * length_req) # length of length required by 5ms frames
t_stretch = t_area[con_idx:con_idx+len_idx]
else:
t_stretch = np.linspace(con, end, num=int(200 * length_req))
t_render = clip(np.concatenate([t_consonant, t_stretch]), 0, t_area[-1]) # concatenate and clip for interpolation
con = len(t_consonant) # new placement of the consonant, now in 5ms frame terms...
logging.info('Interpolating WORLD features.')
# Interpolate render area
f0_off_render = f0_off_interp(t_render)
sp_render = sp_interp(t_render)
ap_render = clip(ap_interp(t_render), 0, 1) # aperiodicity freaks out if not within [0, 1] range
# Calculate new temporal positions for tuning
t = np.arange(len(sp_render)) * 0.005
logging.info('Calculating pitch.')
# Calculate pitch in MIDI note number terms
pitch = self.pitchbend / 100 + self.pitch
t_pitch = 60 * np.arange(len(pitch)) / (self.tempo * 96)
pitch_interp = interp.Akima1DInterpolator(t_pitch, pitch)
pitch_render = pitch_interp(clip(t, 0, t_pitch[-1]))
logging.info('Checking flags.')
# Flag interpretation area
### BEFORE HZ CONVERSION FLAGS ###
# Pitch offset flag
if 't' in self.flags.keys():
pitch_render += self.flags['t'] / 100
# Convert pitch to Hertz and add F0 offset for modulation
f0_render = midi_to_hz(pitch_render) + f0_off_render * mod
### BEFORE RENDER FLAGS ###
# Vocal Fry flag
if 'fe' in self.flags.keys():
logging.info('Adding vocal fry.')
fry = self.flags['fe'] / 1000
fry_len = 0.075
fry_offset = 0
fry_pitch = f0_floor
if 'fl' in self.flags.keys(): # check length flag
fry_len = max(self.flags['fl'] / 1000, 0.001)
if 'fo' in self.flags.keys():
fry_offset = self.flags['fo'] / 1000
if 'fp' in self.flags.keys():
fry_pitch = max(self.flags['fp'], 0)
# Prepare envelope
t_fry = t - t[con] - fry_offset # temporal positions centered around the consonant shifted by offset
amt = smoothstep(-fry - fry_len / 2, -fry + fry_len / 2, t_fry) * smoothstep(fry_len / 2, -fry_len / 2, t_fry) #fry envelope
f0_render = f0_render * (1 - amt) + fry_pitch * amt # mix low F0 for fry
# Gender/Formant shift flag
if 'g' in self.flags.keys():
logging.info('Shifting formants.')
gender = np.exp2(self.flags['g'] / 120)
freq_x = np.linspace(0, 1, fft_size // 2 + 1) # map spectral envelope by frequency instead of time
sp_render_interp = interp.Akima1DInterpolator(freq_x, sp_render, axis=1)
# stretch spectral envelope depending on gender
freq_x = clip(np.linspace(0, gender, fft_size // 2 + 1), 0, 1) # clip axis because Akima1DInterpolator doesn't extrapolate (or even just extend)
sp_render = sp_render_interp(freq_x).copy(order='C')
# Breathiness flag
if 'B' in self.flags.keys():
breath = self.flags['B']
if breath <= 50: # Raise power to flatten smaller areas and keep max aperiodicity
logging.info('Lowering breathiness.')
breath = clip(2 * breath / 50, 0, 1)
ap_render = np.power(ap_render, 5 * (1 - breath) + 1)
else:
breath = 0
# remove pitch in areas with max aperiodicity
husk = np.mean(ap_render, axis=1)
f0_render[np.isclose(husk, 1)] = 0
render = world.synthesize(f0_render, sp_render, ap_render, default_fs)
### AFTER RENDER FLAGS ###
# Max aperiodicity flag
if 'S' in self.flags.keys():
amt = clip(self.flags['S'] / 100, 0, 1)
render_ap = world.synthesize(f0_render, sp_render, np.ones(ap_render.shape), default_fs)
render = render * (1 - amt) + render_ap * amt
if breath > 50: # mix max breathiness signal
logging.info('Raising breathiness.')
breath = clip((breath - 50) / 50, 0, 1)
render_breath = world.synthesize(f0_render, sp_render, np.ones(ap_render.shape), default_fs) # render with all max aperiodicity
render_breath = highpass(render_breath)
render = render * (1 - breath) + render_breath * breath # Mix signals
t_sample = np.arange(len(render)) / default_fs # temporal position per sample
if 'fe' in self.flags.keys():
fry = self.flags['fe'] / 1000
fry_len = 0.05
fry_offset = 0
fry_vol = 0.1
if 'fl' in self.flags.keys(): # check length flag
fry_len = max(self.flags['fl'] / 1000, 0.001)
if 'fo' in self.flags.keys():
fry_offset = self.flags['fo'] / 1000
if 'fv' in self.flags.keys():
fry_vol = clip(self.flags['fv'] / 100, 0, 1)
# Prepare envelope
t_fry = t_sample - t[con] - fry_offset # temporal positions centered around the consonant shifted by offset
amt = smoothstep(-fry - fry_len / 2, -fry + fry_len / 2, t_fry) * smoothstep(fry_len / 2, -fry_len / 2, t_fry) #fry envelope
env = 1 - amt + fry_vol * amt
render *= env
# Fix voicing flag
if 've' in self.flags.keys():
logging.info('Fixing voicing.')
end_breath = self.flags['ve'] / 1000
render_breath = world.synthesize(f0_render, sp_render, np.ones(ap_render.shape), default_fs) # render with all max aperiodicity
render_breath = highpass(render_breath)
offset = 0
if 'vo' in self.flags.keys(): # check offset flag
offset = self.flags['vo'] / 1000
logging.info(offset)
amt = smoothstep(-end_breath / 2, end_breath / 2, t_sample - t[con] - offset) # smoothstep with consonant at 0.5
render = render * (1 - amt) + render_breath * amt # mix sample based on envelope
peak = 0.86 # Peak "compression" but it's actually just normalization LOL
if 'P' in self.flags.keys():
peak = clip(self.flags['P'] / 100, 0, 1)
normal = 0.6 * render / np.max(np.abs(render))
render = render * (1 - peak) + normal * peak
### AFTER PEAK NORMALIZATION ###
# Tremolo flag
if 'A' in self.flags.keys():
logging.info('Adding tremolo.')
tremolo = self.flags['A'] / 100
pitch_sample = pitch_interp(t_sample) # probably bad because of how low the sampling rate is for the pitch
pitch_smooth = lowpass(pitch_sample, cutoff=8, order=4)
vibrato = highpass(pitch_smooth, cutoff=4, order=4)
amt = np.maximum(tremolo * vibrato + 1, 0)
render = render * amt
render *= vol # volume
save_wav(self.out_file, render)
if __name__ == '__main__':
logging.info(f'straycat {version}')
try:
Resampler(*sys.argv[1:])
except Exception as e:
name = e.__class__.__name__
if name == 'TypeError':
logging.info(help_string)
else:
raise e