forked from kizniche/Mycodo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsunriseset.py
116 lines (78 loc) · 3.23 KB
/
sunriseset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# coding=utf-8
# Source:
# Almanac for Computers, 1990
# published by Nautical Almanac Office
# United States Naval Observatory
# Washington, DC 20392
# Inputs:
# day, month, year: date of sunrise/sunset
# latitude, longitude: location for sunrise/sunset
# zenith: Sun's zenith for sunrise/sunset
# offical = 90 degrees 50'
# civil = 96 degrees
# nautical = 102 degrees
# astronomical = 108 degrees
# NOTE: longitude is positive for East and negative for West
# NOTE: the algorithm assumes the use of a calculator with the
# trig functions in "degree" (rather than "radian") mode. Most
# programming languages assume radian arguments, requiring back
# and forth convertions. The factor is 180/pi. So, for instance,
# the equation RA = atan(0.91764 * tan(L)) would be coded as RA
# = (180/pi)*atan(0.91764 * tan((pi/180)*L)) to give a degree
# answer with a degree input for L.
# 1. first calculate the day of the year
# N1 = floor(275 * month / 9)
# N2 = floor((month + 9) / 12)
# N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3))
# N = N1 - (N2 * N3) + day - 30
# 2. convert the longitude to hour value and calculate an approximate time
# lngHour = longitude / 15
# if rising time is desired:
# t = N + ((6 - lngHour) / 24)
# if setting time is desired:
# t = N + ((18 - lngHour) / 24)
# 3. calculate the Sun's mean anomaly
# M = (0.9856 * t) - 3.289
# 4. calculate the Sun's true longitude
# L = M + (1.916 * sin(M)) + (0.020 * sin(2 * M)) + 282.634
# NOTE: L potentially needs to be adjusted into the range [0,360) by adding/subtracting 360
# 5a. calculate the Sun's right ascension
# RA = atan(0.91764 * tan(L))
# NOTE: RA potentially needs to be adjusted into the range [0,360) by adding/subtracting 360
# 5b. right ascension value needs to be in the same quadrant as L
# Lquadrant = (floor( L/90)) * 90
# RAquadrant = (floor(RA/90)) * 90
# RA = RA + (Lquadrant - RAquadrant)
# 5c. right ascension value needs to be converted into hours
# RA = RA / 15
# 6. calculate the Sun's declination
# sinDec = 0.39782 * sin(L)
# cosDec = cos(asin(sinDec))
# 7a. calculate the Sun's local hour angle
# cosH = (cos(zenith) - (sinDec * sin(latitude))) / (cosDec * cos(latitude))
# if (cosH > 1)
# the sun never rises on this location (on the specified date)
# if (cosH < -1)
# the sun never sets on this location (on the specified date)
# 7b. finish calculating H and convert into hours
# if if rising time is desired:
# H = 360 - acos(cosH)
# if setting time is desired:
# H = acos(cosH)
# H = H / 15
# 8. calculate local mean time of rising/setting
# T = H + RA - (0.06571 * t) - 6.622
# 9. adjust back to UTC
# UT = T - lngHour
# NOTE: UT potentially needs to be adjusted into the range [0,24) by adding/subtracting 24
# 10. convert UT value to local time zone of latitude/longitude
# localT = UT + localOffset
#
# Sun Rise and Set
#
def calculate_sunrise():
"""
"""
def calculate_sunset():
"""
"""