-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtest.py
113 lines (96 loc) · 3.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import argparse
import pandas as pd
import random
import numpy as np
import pickle
from stock_env.apps import config
from stock_env.allocation.env_portfolio import StockPortfolioEnv
from tac.evaluation.evaluate_episodes import eval_test
from tac.models.transformer_actor import TransformerActor
import torch.backends.cudnn as cudnn
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
def experiment(variant):
device = variant.get('device', 'cuda')
env_name, dataset = variant['env'], variant['dataset']
group_name = f'{env_name}-{dataset}'
train = pd.read_csv("datasets/" + dataset+"_train.csv", index_col=[0])
trade = pd.read_csv("datasets/" + dataset + "_trade.csv", index_col=[0])
max_ep_len = train.index[-1]
dataset_path = f'{"trajectory/" + variant["dataset"] + "_traj.pkl"}'
with open(dataset_path, 'rb') as f:
trajectories = pickle.load(f)
state_space = trajectories[0]['observations'].shape[1]
stock_dimension = len(train.tic.unique())
print(f"Stock Dimension: {stock_dimension}, State Space: {state_space}")
turbulence_threshold = 100 if dataset == "dow" else None
env_kwargs = {
"dataset": dataset,
"initial_amount": 1000000,
"transaction_cost": 0.0025,
"state_space": state_space,
"stock_dim": stock_dimension,
"tech_indicator_list": config.TECHNICAL_INDICATORS_LIST,
"action_space": stock_dimension,
"mode": "test",
"turbulence_threshold": turbulence_threshold,
}
env = StockPortfolioEnv(df=trade, **env_kwargs)
seed = variant['seed']
env.seed(seed)
env.action_space.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(seed)
state_dim = env.observation_space.shape[0]
act_dim = env.action_space.shape[0]
states = []
for path in trajectories:
states.append(path['observations'])
states = np.concatenate(states, axis=0)
state_mean, state_std = np.mean(states, axis=0), np.std(states, axis=0) + 1e-6
u = variant['u']
model = TransformerActor(
state_dim=state_dim,
act_dim=act_dim,
max_length=u,
max_ep_len=max_ep_len,
hidden_size=variant['embed_dim'],
n_layer=variant['n_layer'],
n_head=variant['n_head'],
n_inner=4 * variant['embed_dim'],
activation_function=variant['activation_function'],
n_positions=1024,
resid_pdrop=variant['dropout'],
attn_pdrop=variant['dropout'])
model.load_state_dict(torch.load(group_name+'.pt'))
eval_test(
env,
state_dim,
act_dim,
model,
max_ep_len=max_ep_len,
state_mean=state_mean,
state_std=state_std,
device=device
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='csi') # kdd, hightech, dow, ndx, mdax, csi
parser.add_argument('--env', type=str, default='stock')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--u', type=int, default=20)
parser.add_argument('--pct_traj', type=float, default=1.)
parser.add_argument('--embed_dim', type=int, default=128)
parser.add_argument('--n_layer', type=int, default=5)
parser.add_argument('--n_head', type=int, default=1)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--activation_function', type=str, default='relu')
parser.add_argument('--device', type=str, default='cuda')
args = parser.parse_args()
experiment(variant=vars(args))