forked from inQWIRE/QWIRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEquations.v
461 lines (400 loc) · 13.1 KB
/
Equations.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
Require Import HOASCircuits.
Require Import Prelim.
Require Import DBCircuits.
Require Import Denotation.
Require Import TypeChecking.
Require Import HOASLib.
Require Import SemanticLib.
Set Bullet Behavior "Strict Subproofs".
Global Unset Asymmetric Patterns.
(* Note: All of these circuits should in principle end with an arbitrary circuit -
here I'm just outputting the mentioned (qu)bits *)
Open Scope circ_scope.
(** Equality 1: X; meas = meas; NOT **)
Definition X_meas : Box Qubit Bit :=
box_ q ⇒ meas $ _X $ q.
Lemma X_meas_WT : Typed_Box X_meas.
Proof. type_check. Qed.
Definition meas_NOT : Box Qubit Bit :=
box_ q ⇒ BNOT $ meas $ q.
Lemma meas_NOT_WT : Typed_Box meas_NOT.
Proof. type_check. Qed.
Lemma NOT_meas_comm : X_meas ≡ meas_NOT.
Proof.
matrix_denote.
intros ρ b WF.
Msimpl.
restore_dims.
repeat rewrite σx_sa.
rewrite Mmult_plus_distr_l.
rewrite Mmult_plus_distr_r.
repeat rewrite <- Mmult_assoc.
repeat rewrite (Mmult_assoc _ ⟨0∣ σx).
repeat rewrite (Mmult_assoc _ ⟨1∣ σx).
repeat rewrite (Mmult_assoc _ σx ∣0⟩).
repeat rewrite (Mmult_assoc _ σx ∣1⟩).
Qsimpl.
rewrite Mplus_comm.
reflexivity.
Qed.
(** Equality 2: meas x; lift x; if x then U else V = alt x U V; meas-discard x **)
Definition lift_UV {W} (U V : Unitary W) : Box (Qubit ⊗ W) W :=
box_ qr ⇒
let_ (q,r) ← output qr;
let_ b ← meas $ q;
lift_ x ← b;
if x then U $ r else V $ r.
Lemma lift_UV_WT : forall W (U V : Unitary W), Typed_Box (lift_UV U V).
Proof. type_check. Qed.
Definition alternate {W} (U V : Unitary W) : Box (Qubit ⊗ W) (Qubit ⊗ W) :=
box_ cx ⇒
let_ (c,x) ← ctrl U $ cx;
let_ c ← _X $ c;
let_ (c,x) ← ctrl V $ (c,x);
(_X $ c,x).
Lemma alternate_WT : forall W (U V : Unitary W), Typed_Box (alternate U V).
Proof. type_check. Qed.
Definition alt_UV {W} (U V : Unitary W) : Box (Qubit ⊗ W) W :=
box_ (q,r) ⇒
let_ (q,r) ← alternate U V $ (q,r);
let_ () ← discard $ meas $ q;
output r.
Lemma alt_UV_WT : forall W (U V : Unitary W), Typed_Box (alt_UV U V).
Proof. type_check. Qed.
(* Probably want a lemma about alternate's behavior *)
Proposition lift_alternate_eq : forall W (U V : Unitary W), lift_UV U V ≡ alt_UV U V.
Proof.
intros W U V ρ WF safe.
matrix_denote.
Abort.
(** Equality 3: U; meas-discard = meas-discard **)
Definition U_meas_discard (U : Unitary Qubit) :=
box_ q ⇒ discard $ meas $ U $ q.
Lemma U_meas_discard_WT : forall (U : Unitary Qubit), Typed_Box (U_meas_discard U).
Proof. type_check. Qed.
Definition meas_discard :=
box_ q ⇒ discard $ meas $ q.
Lemma meas_discard_WT : Typed_Box meas_discard.
Proof. type_check. Qed.
Lemma U_meas_eq_meas : forall U, U_meas_discard U ≡ meas_discard.
Proof.
intros U ρ safe WF.
matrix_denote.
specialize (unitary_gate_unitary U); intros [WFU UU].
simpl in *.
Msimpl.
rewrite Mmult_plus_distr_l.
rewrite Mmult_plus_distr_r.
solve_matrix.
remember (denote_unitary U) as u.
repeat rewrite Cmult_plus_distr_r.
set (u00 := u 0%nat 0%nat). set (u01 := u 0%nat 1%nat).
set (u10 := u 1%nat 0%nat). set (u11 := u 1%nat 1%nat).
set (ρ00 := ρ 0%nat 0%nat). set (ρ01 := ρ 0%nat 1%nat).
set (ρ10 := ρ 1%nat 0%nat). set (ρ11 := ρ 1%nat 1%nat).
repeat rewrite Cplus_assoc.
repeat rewrite (Cmult_comm _ ρ00), (Cmult_comm _ ρ01),
(Cmult_comm _ ρ10), (Cmult_comm _ ρ11).
set (c000 := ρ00 * u00 * u00 ^* ). set (c001 := ρ00 * u10 * u10 ^* ).
set (c010 := ρ01 * u00 * u01 ^* ). set (c011 := ρ01 * u10 * u11 ^* ).
set (c100 := ρ10 * u01 * u00 ^* ). set (c101 := ρ10 * u11 * u10 ^* ).
set (c110 := ρ11 * u01 * u01 ^* ). set (c111 := ρ11 * u11 * u11 ^* ).
repeat rewrite <- Cplus_assoc. rewrite (Cplus_comm c110).
repeat rewrite <- Cplus_assoc. rewrite (Cplus_comm c010).
repeat rewrite <- Cplus_assoc. rewrite (Cplus_comm c100).
repeat rewrite Cplus_assoc.
replace (c000 + c001) with ρ00.
2: {
unfold c000, c001.
repeat rewrite <- Cmult_assoc.
rewrite <- Cmult_plus_distr_l.
assert (H : ((u † × u) 0 0 = I 2 0 0)%nat) by (rewrite <- UU; easy).
unfold Mmult, I, adjoint in H. simpl in H.
autorewrite with C_db in H.
rewrite Cmult_comm in H.
rewrite (Cmult_comm ((u 1%nat 0%nat) ^* )) in H.
unfold u00, u10.
rewrite H.
lca.
}
rewrite <- 3 Cplus_assoc.
rewrite (Cplus_assoc c111).
replace (c111 + c110) with ρ11.
2: {
unfold c111, c110.
repeat rewrite <- Cmult_assoc.
rewrite <- Cmult_plus_distr_l.
assert (H: ((u † × u) 1 1 = I 2 1 1)%nat) by (rewrite <- UU; easy).
unfold Mmult, I, adjoint in H. simpl in H.
autorewrite with C_db in H.
rewrite Cmult_comm in H.
rewrite Cplus_comm in H.
rewrite Cmult_comm in H.
unfold u11, u01.
rewrite H.
lca.
}
rewrite (Cplus_comm ρ11).
rewrite <- Cplus_assoc.
repeat rewrite (Cplus_assoc c011).
replace (c011 + c010) with C0.
2: {
unfold c011, c010.
repeat rewrite <- Cmult_assoc.
rewrite <- Cmult_plus_distr_l.
assert (H : ((u† × u) 1 0 = I 2 1 0)%nat) by (rewrite <- UU; easy).
unfold Mmult, I, adjoint in H. simpl in H.
autorewrite with C_db in H.
rewrite Cmult_comm in H.
rewrite Cplus_comm in H.
rewrite Cmult_comm in H.
unfold u00, u01, u10, u11.
rewrite H.
lca.
}
rewrite Cplus_0_l.
rewrite <- Cplus_assoc.
repeat rewrite (Cplus_assoc c101).
replace (c101 + c100) with C0.
2: {
unfold c101, c100.
repeat rewrite <- Cmult_assoc.
rewrite <- Cmult_plus_distr_l.
assert (H : ((u † × u ) 0 1 = I 2 0 1)%nat) by (rewrite <- UU; easy).
unfold Mmult, I, adjoint in H. simpl in H.
autorewrite with C_db in H.
rewrite Cmult_comm in H.
rewrite Cplus_comm in H.
rewrite Cmult_comm in H.
unfold u00, u01, u10, u11.
rewrite H.
lca.
}
rewrite Cplus_0_l.
reflexivity.
Qed.
(** Equality 4: init; meas = new **)
Definition init_meas (b : bool) : Box One Bit :=
box_ () ⇒
let_ q ← unbox (init b) ();
let_ b ← meas $ q;
output b.
Lemma init_meas_WT : forall b, Typed_Box (init_meas b).
Proof. destruct b; type_check. Qed.
Definition init_meas_new : forall b, init_meas b ≡ new b.
Proof.
destruct b; simpl.
- repeat (autounfold with den_db; intros; simpl).
Msimpl; solve_matrix.
- repeat (autounfold with den_db; intros; simpl).
Msimpl; solve_matrix.
Qed.
(** Equality 5: init b; alt b U V = init b; if b then U else V **)
Definition init_alt {W} (b : bool) (U V : Unitary W) : Box W (Qubit ⊗ W) :=
box_ qs ⇒
let_ q ← init b $ ();
let_ (q,qs) ← alternate U V $ (q,qs);
(q,qs).
Lemma init_alt_WT : forall W b (U V : Unitary W), Typed_Box (init_alt b U V).
Proof. type_check. Qed.
Definition init_if {W} (b : bool) (U V : Unitary W) : Box W (Qubit ⊗ W) :=
box_ qs ⇒
let_ q ←init b $ ();
let_ qs ← (if b then U else V) $ qs;
(q,qs).
Lemma init_if_WT : forall W b (U V : Unitary W), Typed_Box (init_if b U V).
Proof. type_check. Qed.
Lemma init_if_true_qubit : forall (U V : Unitary Qubit) ρ,
WF_Matrix ρ ->
⟦init_if true U V⟧ ρ = (∣1⟩ ⊗ I 2 )%M × (⟦U⟧ × ρ × (⟦U⟧†)) × (⟨1∣ ⊗ I 2)%M.
Proof.
intros U V ρ WF. simpl in *.
matrix_denote.
specialize (WF_Matrix_U U) as WFU. simpl in WFU.
Msimpl.
solve_matrix.
Qed.
Lemma init_if_false_qubit : forall (U V : Unitary Qubit) ρ,
WF_Matrix ρ ->
⟦init_if false U V⟧ ρ = (∣0⟩ ⊗ I 2 )%M × (⟦V⟧ × ρ × (⟦V⟧†)) × (⟨0∣ ⊗ I 2)%M.
Proof.
intros U V ρ WF. simpl in *.
matrix_denote.
specialize (WF_Matrix_U V) as WFV. simpl in WFV.
Msimpl.
solve_matrix.
Qed.
Lemma init_alt_if_qubit : forall b (U V : Unitary Qubit), init_alt b U V ≡ init_if b U V.
Proof.
destruct b; simpl; intros U V ρ b WF.
- matrix_denote.
match goal with
| [|- context[let (res, u) := ?exp in _]] => replace exp with (0%nat, [false; true], ⟦V⟧)%core
end; [| dependent destruction V; easy].
match goal with
| [|- context[let (res, u) := ?exp in _]] => replace exp with (0%nat, [false; true], ⟦U⟧)%core
end; [| dependent destruction U; easy].
specialize (WF_Matrix_U U) as WFU.
specialize (WF_Matrix_U V) as WFV.
simpl in *.
replace 4%nat with (2 * 2)%nat by easy. Msimpl.
solve_matrix.
- matrix_denote.
match goal with
| [|- context[let (res, u) := ?exp in _]] => replace exp with (0%nat, [false; true], ⟦V⟧)%core
end; [| dependent destruction V; easy].
match goal with
| [|- context[let (res, u) := ?exp in _]] => replace exp with (0%nat, [false; true], ⟦U⟧)%core
end; [| dependent destruction U; easy].
specialize (WF_Matrix_U U) as WFU.
specialize (WF_Matrix_U V) as WFV.
simpl in *.
replace 4%nat with (2 * 2)%nat by easy. Msimpl.
solve_matrix.
Qed.
Proposition init_alt_if : forall W b (U V : Unitary W), init_alt b U V ≡ init_if b U V.
Proof.
destruct b; simpl.
- matrix_denote.
Abort.
(** Equality 6: init b; X b = init ~b **)
Definition init_X (b : bool) : Box One Qubit :=
box_ () ⇒ _X $ init b $ ().
Lemma init_X_WT : forall b, Typed_Box (init_X b).
Proof. type_check. Qed.
Lemma init_X_init : forall b, init_X b ≡ init (negb b).
Proof.
destruct b; simpl.
- matrix_denote. intros.
Qsimpl.
repeat rewrite <- Mmult_assoc; Qsimpl.
repeat rewrite Mmult_assoc; Qsimpl.
reflexivity.
- matrix_denote. intros.
Qsimpl.
repeat rewrite <- Mmult_assoc; Qsimpl.
repeat rewrite Mmult_assoc; Qsimpl.
reflexivity.
Qed.
(* Additional Equalities *)
(** Equation 7: lift x <- b; new x = id b **)
Lemma new_WT : forall b, Typed_Box (new b).
Proof. destruct b; type_check. Qed.
Definition lift_new : Box Bit Bit :=
box_ b ⇒
lift_ x ← b;
new x $ ().
Lemma lift_new_WT : Typed_Box lift_new.
Proof. type_check. Qed.
Hint Unfold Splus : den_db.
Definition Classical {n} (ρ : Density n) := forall i j, i <> j -> ρ i j = 0.
Lemma lift_new_new : forall (ρ : Density 2), WF_Matrix ρ ->
Classical ρ ->
⟦lift_new⟧ ρ = ⟦@id_circ Bit⟧ ρ.
Proof.
intros ρ M C.
matrix_denote.
Msimpl.
solve_matrix.
rewrite C; trivial; lia.
rewrite C; trivial; lia.
Qed.
(** Equation 7': meas q; lift x <- p; new x = meas q **)
Definition meas_lift_new : Box Qubit Bit :=
box_ q ⇒
let_ b ← meas $ q;
lift_ x ← b;
new x $ ().
Lemma meas_lift_new_WT : Typed_Box meas_lift_new.
Proof. type_check. Qed.
Lemma meas_lift_new_new : meas_lift_new ≡ boxed_gate meas.
Proof.
intros ρ safe WF.
matrix_denote.
Msimpl.
solve_matrix.
Qed.
(*********************************************)
(* Automated optimization of large quantum *)
(* circuits with continuous parameters *)
(*********************************************)
(* Hadamard elimination *)
Lemma super_super : forall m n o (U : Matrix o n) (V : Matrix n m) (ρ : Square m) ,
super U (super V ρ) = super (U × V) ρ.
Proof.
intros m n o U V ρ.
unfold super.
Msimpl.
repeat rewrite Mmult_assoc.
reflexivity.
Qed.
Lemma super_eq : forall m n (U U' : Matrix m n) (ρ ρ' : Square n),
U = U' ->
ρ = ρ' ->
super U ρ = super U' ρ'.
Proof. intros; subst; easy. Qed.
Definition HSH := box_ q ⇒ _H $ _S $ _H $ q.
Definition SdHSd := box_ q ⇒ trans _S $ _H $ trans _S $ q.
Proposition HSH_SdHSd_eq : HSH ≡ SdHSd.
Proof.
intros ρ safe WF.
repeat (autounfold with vector_den_db; simpl).
repeat rewrite super_super.
specialize (WF_Matrix_U _S) as WFS.
specialize (WF_Matrix_U (trans _S)) as WFSd.
(*
apply super_eq; trivial.
Msimpl.
solve_matrix.
(* This doesn't quite work, since their P is only our S up to an
"unimportant global phase" since they use R_z gates
(specifically, the coefficient is e^i*pi/4)
I wonder if density matrix form helps...
*)
*)
Msimpl.
unfold super.
solve_matrix.
- rewrite Cexp_PI2.
unfold Cexp.
rewrite cos_neg, sin_neg.
rewrite cos_PI2, sin_PI2.
replace (0,-1)%core with (-Ci) by lca.
repeat rewrite Cmult_plus_distr_r.
(* maybe? If so, it's a mess *)
Abort.
Definition HH_CNOT_HH := box_ (q1,q2) ⇒ (_H ∥ _H) $ CNOT $ (_H ∥ _H) $ (q1, q2).
(* Just `CNOT_at (1,0)` *)
Definition NOTC := box_ (q1,q2) ⇒ let_ (q2, q1) ← CNOT $ (q2, q1); (q1, q2).
Lemma HH_CNOT_HH_eq_NOTC : HH_CNOT_HH ≡ NOTC.
Proof.
intros ρ safe WF.
repeat (autounfold with vector_den_db; simpl).
repeat rewrite super_super.
Msimpl.
apply super_eq; trivial.
Msimpl.
restore_dims.
solve_matrix.
all: C_field.
Qed.
(***********************)
(* Assorted Equalities *)
(***********************)
(** HZH Equality **)
Definition HZH : Box Qubit Qubit :=
box_ q ⇒ _H $ _Z $ _H $ q.
Lemma HZH_X : HZH ≡ _X.
Proof.
matrix_denote.
intros.
Msimpl.
restore_dims.
rewrite σx_sa, σz_sa, hadamard_sa.
repeat rewrite <- Mmult_assoc.
rewrite (Mmult_assoc _ _ hadamard).
rewrite (Mmult_assoc _ hadamard).
rewrite <- (Mmult_assoc hadamard).
replace (hadamard × σz × hadamard) with σx. easy.
crunch_matrix.
Qed.