forked from inQWIRE/QWIRE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
HOASCircuits.v
113 lines (91 loc) · 4.02 KB
/
HOASCircuits.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
Require Export Contexts.
Require Import List.
Import ListNotations.
Inductive Circuit (w : WType) : Set :=
| output : Pat w -> Circuit w
| gate : forall {w1 w2},
Gate w1 w2 -> Pat w1 -> (Pat w2 -> Circuit w) -> Circuit w
| lift : Pat Bit -> (bool -> Circuit w) -> Circuit w.
Inductive Box w1 w2 : Set := box : (Pat w1 -> Circuit w2) -> Box w1 w2.
Arguments output {w}.
Arguments gate {w w1 w2}.
Arguments lift {w}.
Arguments box {w1 w2}.
Definition Square_Box W := Box W W.
Definition unbox {w1 w2} (b : Box w1 w2) (p : Pat w1) : Circuit w2 :=
match b with box c => c p end.
Fixpoint compose {w1 w2} (c : Circuit w1) (f : Pat w1 -> Circuit w2) : Circuit w2 :=
match c with
| output p => f p
| gate g p c' => gate g p (fun p' => compose (c' p') f)
| lift p c' => lift p (fun bs => compose (c' bs) f)
end.
(* Typed Circuits and Boxes *)
Reserved Notation "Γ ⊢ c :Circ" (at level 30).
Reserved Notation "Γ ⊢ f :Fun" (at level 30).
Inductive Types_Circuit : OCtx -> forall {w}, Circuit w -> Set :=
| types_output : forall {Γ Γ' w} {p : Pat w} {pf : Γ = Γ'},
Γ ⊢ p :Pat -> Γ' ⊢ output p :Circ
| types_gate : forall {Γ Γ1 Γ1' w1 w2 w} {f : Pat w2 -> Circuit w}
{p1 : Pat w1} {g : Gate w1 w2} ,
Γ1 ⊢ p1 :Pat ->
(* Γ ⊢ f :Fun ->*)
(forall Γ2 Γ2' (p2 : Pat w2) {pf2 : Γ2' == Γ2 ∙ Γ},
Γ2 ⊢ p2 :Pat -> Γ2' ⊢ f p2 :Circ) ->
forall {pf1 : Γ1' == Γ1 ∙ Γ},
Γ1' ⊢ gate g p1 f :Circ
| types_lift : forall {Γ1 Γ2 Γ w } {p : Pat Bit} {f : bool -> Circuit w},
Γ1 ⊢ p :Pat ->
(forall b, Γ2 ⊢ f b :Circ) ->
forall {pf : Γ == Γ1 ∙ Γ2},
Γ ⊢ lift p f :Circ
where "Γ ⊢ c :Circ" := (Types_Circuit Γ c)
and "Γ ⊢ f :Fun" := (forall Γ0 Γ0' p0, Γ0' == Γ0 ∙ Γ ->
Γ0 ⊢ p0 :Pat ->
Γ0' ⊢ f p0 :Circ ).
(* Notation "Γ ⊢_Q c : w" := (@Types_Circuit Γ w c) (at level 30). *)
(* Notation "Γ ⇒_Q p : w" := (@Types_Pat Γ w p) (at level 30). *)
(*
| types_lift_qubit : forall {Γ1 Γ2 p Γ w f} {v : is_valid Γ} {m : Γ = Γ1 ⋓ Γ2},
Types_Pat Γ1 p Qubit ->
(forall b, Types_Circuit Γ2 (f b) w) ->
Types_Circuit Γ (lift p f) w.
*)
(*
Notation "Γ ⊢ c :Circ" := (Types_Circuit Γ c) (at level 30).
Notation "Γ ⊢ f :Fun" := (forall Γ0 Γ0' p0, Γ0' == Γ0 ∙ Γ ->
Γ0 ⊢ p0 :Pat ->
Γ0' ⊢ f p0 :Circ ) (at level 30).
*)
Print Types_Circuit.
Definition Typed_Box {W1 W2 : WType} (b : Box W1 W2) : Set :=
forall Γ (p : Pat W1), Γ ⊢ p :Pat -> Γ ⊢ unbox b p :Circ.
(* Prevent compute from unfolding important fixpoints *)
Opaque merge.
Opaque Ctx.
Opaque is_valid.
(* Composition lemma *)
Lemma compose_typing : forall Γ1 Γ1' Γ W W' (c : Circuit W) (f : Pat W -> Circuit W'),
Γ1 ⊢ c :Circ ->
Γ ⊢ f :Fun ->
forall {pf : Γ1' == Γ1 ∙ Γ},
Γ1' ⊢ compose c f :Circ.
Proof.
do 7 intro. intros types_c.
generalize dependent Γ1'.
generalize dependent Γ.
dependent induction types_c; intros Γ0 Γ01' types_f pf0.
* simpl. subst. eapply types_f; eauto.
* simpl.
eapply @types_gate with (Γ1 := Γ1) (Γ := Γ ⋓ Γ0); auto; try solve_merge.
intros.
apply H with (Γ2 := Γ2) (Γ := Γ0) (Γ2' := Γ2 ⋓ Γ); auto; solve_merge.
* simpl.
apply @types_lift with (Γ1 := Γ1) (Γ2 := Γ2 ⋓ Γ0); auto; try solve_merge.
intros. apply H with (Γ := Γ0); auto; solve_merge.
Qed.
Lemma unbox_typing : forall Γ W1 W2 (p : Pat W1) (c : Box W1 W2),
Γ ⊢ p :Pat ->
Typed_Box c ->
Γ ⊢ unbox c p :Circ.
Proof. unfold Typed_Box in *. auto. Qed.