forked from GNOME/gtk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcogs.glsl
224 lines (178 loc) · 5.19 KB
/
cogs.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Originally from: https://www.shadertoy.com/view/3ljyDD
// License CC0: Hexagonal tiling + cog wheels
// Nothing fancy, just hexagonal tiling + cog wheels
#define PI 3.141592654
#define TAU (2.0*PI)
#define MROT(a) mat2(cos(a), sin(a), -sin(a), cos(a))
float hash(in vec2 co) {
return fract(sin(dot(co.xy ,vec2(12.9898,58.233))) * 13758.5453);
}
float pcos(float a) {
return 0.5 + 0.5*cos(a);
}
void rot(inout vec2 p, float a) {
float c = cos(a);
float s = sin(a);
p = vec2(c*p.x + s*p.y, -s*p.x + c*p.y);
}
float modPolar(inout vec2 p, float repetitions) {
float angle = 2.0*PI/repetitions;
float a = atan(p.y, p.x) + angle/2.;
float r = length(p);
float c = floor(a/angle);
a = mod(a,angle) - angle/2.;
p = vec2(cos(a), sin(a))*r;
// For an odd number of repetitions, fix cell index of the cell in -x direction
// (cell index would be e.g. -5 and 5 in the two halves of the cell):
if (abs(c) >= (repetitions/2.0)) c = abs(c);
return c;
}
float pmin(float a, float b, float k) {
float h = clamp( 0.5+0.5*(b-a)/k, 0.0, 1.0 );
return mix( b, a, h ) - k*h*(1.0-h);
}
const vec2 sz = vec2(1.0, sqrt(3.0));
const vec2 hsz = 0.5*sz;
const float smallCount = 16.0;
vec2 hextile(inout vec2 p) {
// See Art of Code: Hexagonal Tiling Explained!
// https://www.youtube.com/watch?v=VmrIDyYiJBA
vec2 p1 = mod(p, sz)-hsz;
vec2 p2 = mod(p - hsz*1.0, sz)-hsz;
vec2 p3 = mix(p2, p1, vec2(length(p1) < length(p2)));
vec2 n = p3 - p;
p = p3;
return n;
}
float circle(vec2 p, float r) {
return length(p) - r;
}
float box(vec2 p, vec2 b) {
vec2 d = abs(p)-b;
return length(max(d,0.0)) + min(max(d.x,d.y),0.0);
}
float unevenCapsule(vec2 p, float r1, float r2, float h) {
p.x = abs(p.x);
float b = (r1-r2)/h;
float a = sqrt(1.0-b*b);
float k = dot(p,vec2(-b,a));
if( k < 0.0 ) return length(p) - r1;
if( k > a*h ) return length(p-vec2(0.0,h)) - r2;
return dot(p, vec2(a,b) ) - r1;
}
float cogwheel(vec2 p, float innerRadius, float outerRadius, float cogs, float holes) {
float cogWidth = 0.25*innerRadius*TAU/cogs;
float d0 = circle(p, innerRadius);
vec2 icp = p;
modPolar(icp, holes);
icp -= vec2(innerRadius*0.55, 0.0);
float d1 = circle(icp, innerRadius*0.25);
vec2 cp = p;
modPolar(cp, cogs);
cp -= vec2(innerRadius, 0.0);
float d2 = unevenCapsule(cp.yx, cogWidth, cogWidth*0.75, (outerRadius-innerRadius));
float d3 = circle(p, innerRadius*0.20);
float d = 1E6;
d = min(d, d0);
d = pmin(d, d2, 0.5*cogWidth);
d = min(d, d2);
d = max(d, -d1);
d = max(d, -d3);
return d;
}
float ccell1(vec2 p, float r) {
float d = 1E6;
const float bigCount = 60.0;
vec2 cp0 = p;
rot(cp0, -iTime*TAU/bigCount);
float d0 = cogwheel(cp0, 0.36, 0.38, bigCount, 5.0);
vec2 cp1 = p;
float nm = modPolar(cp1, 6.0);
cp1 -= vec2(0.5, 0.0);
rot(cp1, 0.2+TAU*nm/2.0 + iTime*TAU/smallCount);
float d1 = cogwheel(cp1, 0.11, 0.125, smallCount, 5.0);
d = min(d, d0);
d = min(d, d1);
return d;
}
float ccell2(vec2 p, float r) {
float d = 1E6;
vec2 cp0 = p;
float nm = modPolar(cp0, 6.0);
vec2 cp1 = cp0;
const float off = 0.275;
const float count = smallCount + 2.0;
cp0 -= vec2(off, 0.0);
rot(cp0, 0.+TAU*nm/2.0 - iTime*TAU/count);
float d0 = cogwheel(cp0, 0.09, 0.105, count, 5.0);
cp1 -= vec2(0.5, 0.0);
rot(cp1, 0.2+TAU*nm/2.0 + iTime*TAU/smallCount);
float d1 = cogwheel(cp1, 0.11, 0.125, smallCount, 5.0);
float l = length(p);
float d2 = l - (off+0.055);
float d3 = d2 + 0.020;;
vec2 tp0 = p;
modPolar(tp0, 60.0);
tp0.x -= off;
float d4 = box(tp0, vec2(0.0125, 0.005));
float ctime = -(iTime*0.05 + r)*TAU;
vec2 tp1 = p;
rot(tp1, ctime*12.0);
tp1.x -= 0.13;
float d5 = box(tp1, vec2(0.125, 0.005));
vec2 tp2 = p;
rot(tp2, ctime);
tp2.x -= 0.13*0.5;
float d6 = box(tp2, vec2(0.125*0.5, 0.0075));
float d7 = l - 0.025;
float d8 = l - 0.0125;
d = min(d, d0);
d = min(d, d1);
d = min(d, d2);
d = max(d, -d3);
d = min(d, d4);
d = min(d, d5);
d = min(d, d6);
d = min(d, d7);
d = max(d, -d8);
return d;
}
float df(vec2 p, float scale, inout vec2 nn) {
p /= scale;
nn = hextile(p);
nn = floor(nn + 0.5);
float r = hash(nn);
float d;;
if (r < 0.5) {
d = ccell1(p, r);
} else {
d = ccell2(p, r);
}
return d*scale;
}
vec3 postProcess(vec3 col, vec2 q) {
//col = saturate(col);
col=pow(clamp(col,0.0,1.0),vec3(0.75));
col=col*0.6+0.4*col*col*(3.0-2.0*col); // contrast
col=mix(col, vec3(dot(col, vec3(0.33))), -0.4); // satuation
col*=0.5+0.5*pow(19.0*q.x*q.y*(1.0-q.x)*(1.0-q.y),0.7); // vigneting
return col;
}
void mainImage(out vec4 fragColor, vec2 fragCoord) {
vec2 q = fragCoord/iResolution.xy;
vec2 p = -1.0 + 2.0*q;
p.x *= iResolution.x/iResolution.y;
float tm = iTime*0.1;
p += vec2(cos(tm), sin(tm*sqrt(0.5)));
float z = mix(0.5, 1.0, pcos(tm*sqrt(0.3)));
float aa = 4.0 / iResolution.y;
vec2 nn = vec2(0.0);
float d = df(p, z, nn);
vec3 col = vec3(160.0)/vec3(255.0);
vec3 baseCol = vec3(0.3);
vec4 logoCol = vec4(baseCol, 1.0)*smoothstep(-aa, 0.0, -d);
col = mix(col, logoCol.xyz, pow(logoCol.w, 8.0));
col += 0.4*pow(abs(sin(20.0*d)), 0.6);
col = postProcess(col, q);
fragColor = vec4(col, 1.0);
}