-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
50 lines (46 loc) · 1.77 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -*- coding: utf-8 -*-
"""
Created on Sun Jun 27 15:54:50 2021
@author: utsav gada
"""
from flask import Flask, render_template, request
import os
import jsonify
import requests
import pickle
import numpy as np
from sklearn import *
from sklearn.preprocessing import StandardScaler
app = Flask(__name__)
model = pickle.load(open('incomeprediction.pkl', 'rb'))
@app.route('/',methods=['GET'])
def Home():
return render_template('index.html')
standard_to = StandardScaler()
@app.route("/predict", methods=['POST'])
def predict():
if request.method == 'POST':
Age = int(request.form['age'])
Workclass = str(request.form['workclass'])
Education = str(request.form['education'])
Educationnum = int(request.form['educationnum'])
Maritalstatus = str(request.form['maritalstatus'])
Occupation = str(request.form['occupation'])
Relationship = str(request.form['relationship'])
Race = str(request.form['race'])
Sex = str(request.form['sex'])
Capitalgain = int(request.form['capitalgain'])
Capitalloss = int(request.form['capitalloss'])
Hoursperweek = int(request.form['hoursperweek'])
Nativecountry = str(request.form['nativecountry'])
prediction=model.predict([[Age,Workclass,Education,Educationnum,Maritalstatus,Occupation,Relationship,Race,Sex,Capitalgain,Capitalloss,Hoursperweek,Nativecountry]])
output=prediction[0]
print(output)
if output == 0:
return render_template('index.html',prediction_text="Income is Less than or equal to 50,000")
else:
return render_template('index.html',prediction_text="Income is Greater than 50,000")
else:
return render_template('index.html')
if __name__=="__main__":
app.run(debug=True)