forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathword2vec_base.py
255 lines (212 loc) Β· 9.82 KB
/
word2vec_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import re
import numpy as np
import paddle
import paddle.distributed as dist
import paddle.nn as nn
from gensim.models.keyedvectors import KeyedVectors
from paddle.io import DataLoader, Dataset
from sklearn.model_selection import train_test_split
# yapf: disable
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--data_dir", type=str, default="./sentence-polarity-dataset-v1/", help="Specify the data dir.")
parser.add_argument("--pretrained_word2vec_file", type=str, default="./sentence-polarity-dataset-v1/GoogleNews-vectors-negative300.bin", help="Specify the pretrained word2vec model path.")
parser.add_argument("--logging_step", type=int, default=10, help="The frequency, in number of steps, the training logs are printed. (default: %(default)d)")
parser.add_argument("--epochs", type=int, default=20, help="Total number of training epochs to perform.")
parser.add_argument("--batch_size", type=int, default=64, help="Batch size per GPU/CPU for training.")
parser.add_argument("--dropout", type=float, default=0.5, help="The dropout rate.")
parser.add_argument("--lr", type=float, default=0.001, help="The initial learning rate.")
parser.add_argument("--weight_decay", type=float, default=0.0001, help="The weight decay for optimizer.")
parser.add_argument("--seed", type=int, default=2020, help="Random seed.")
parser.add_argument("--max_seq_len", type=int, default=256, help='max grad norm')
parser.add_argument("--sent_embedding_dim", type=int, default=64, help="The size of sentence embedding.")
parser.add_argument("--num_classes", type=int, default=2, help="The num of classification classes.")
parser.add_argument("--device", type=str, default="gpu", help="Device for selecting for the training.")
args = parser.parse_args()
return args
# yapf: enable
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " 's", string)
string = re.sub(r"\'ve", " 've", string)
string = re.sub(r"n\'t", " n't", string)
string = re.sub(r"\'re", " 're", string)
string = re.sub(r"\'d", " 'd", string)
string = re.sub(r"\'ll", " 'll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def load_data_and_labels(positive_data_file, negative_data_file):
"""
Loads MR polarity data from files, splits the data into words and generates labels.
Returns split sentences and labels.
"""
# Load data from files
positive_examples = list(open(positive_data_file, "r", encoding="latin-1").readlines())
positive_examples = [s.strip() for s in positive_examples]
negative_examples = list(open(negative_data_file, "r", encoding="latin-1").readlines())
negative_examples = [s.strip() for s in negative_examples]
# Split by words
x_text = positive_examples + negative_examples
x_text = [clean_str(sent) for sent in x_text]
x_text = list(map(lambda x: x.split(), x_text))
# Generate labels
positive_labels = [1 for _ in positive_examples]
negative_labels = [0 for _ in negative_examples]
y = np.array(positive_labels + negative_labels)
return [x_text, y]
class Word2VecBoWTextClassification(nn.Layer):
def __init__(self, word_embedding_dim, sent_embedding_dim, dropout, num_classes):
super(Word2VecBoWTextClassification, self).__init__()
self._fc1 = nn.Linear(word_embedding_dim, sent_embedding_dim)
self._fc2 = nn.Linear(sent_embedding_dim, num_classes)
self._dropout = nn.Dropout(p=dropout)
def forward(self, inputs):
word_emb, seq_lens = inputs
# [batch_size, word_embedding_dim]
sent_emb = self.average_word_embedding(word_emb, seq_lens)
# [batch_size, sent_embedding_dim]
dense = self._fc1(sent_emb)
dense = self._dropout(dense)
# [batch_size, num_classes]
out = self._fc2(dense)
return out
def average_word_embedding(self, word_emb, seq_lens):
"""
Parameters:
word_emb: It is a Tensor with shape `[batch_size, max_seq_len, word_embedding_dim]`.
seq_lens: It is a Tensor with shape `[batch_size]`.
"""
seq_lens = paddle.unsqueeze(seq_lens, axis=-1)
seq_lens = paddle.cast(seq_lens, dtype=word_emb.dtype)
# [batch_size, word_embedding_dim]
sent_emb = paddle.sum(word_emb, axis=1)
# [batch_size, word_embedding_dim]
sent_emb = sent_emb / seq_lens
return sent_emb
class SentencePolarityDatasetV1(Dataset):
def __init__(self, x, y, gensim_model, max_seq_len):
super(SentencePolarityDatasetV1, self).__init__()
self._text = list(zip(x, y))
self._gensim_model = gensim_model
self._vector_size = gensim_model.vector_size
self._max_seq_len = max_seq_len
self._data = self.convert_to_ids()
def convert_to_ids(self):
data = []
for sentence, label in self._text:
sentence = sentence[: self._max_seq_len]
ids = np.zeros([len(sentence), self._vector_size], dtype=np.float32)
for i, word in enumerate(sentence):
if word in self._gensim_model:
ids[i] = self._gensim_model[word]
else:
ids[i] = np.random.uniform(-0.25, 0.25, self._vector_size)
data.append([ids, label])
return data
def __getitem__(self, idx):
ids = np.copy(self._data[idx][0])
label = self._data[idx][1]
return (ids, label)
def __len__(self):
return len(self._data)
def generate_batch(batch):
batch_ids, batch_label = zip(*batch)
max_len = max([ids.shape[0] for ids in batch_ids])
new_batch_ids = np.zeros([len(batch_ids), max_len, batch_ids[0].shape[1]], dtype=np.float32)
new_batch_label = []
new_batch_seq_len = []
for i, (ids, label) in enumerate(zip(batch_ids, batch_label)):
seq_len = ids.shape[0]
new_batch_ids[i, :seq_len, :] = ids
new_batch_label.append(label)
new_batch_seq_len.append(seq_len)
return new_batch_ids, new_batch_label, new_batch_seq_len
def train(args):
paddle.set_device(args.device)
if dist.get_world_size() > 1:
dist.init_parallel_env()
pos_file = os.path.join(args.data_dir, "rt-polarity.pos")
neg_file = os.path.join(args.data_dir, "rt-polarity.neg")
x_text, y = load_data_and_labels(pos_file, neg_file)
x_train, x_test, y_train, y_test = train_test_split(x_text, y, test_size=0.1, random_state=args.seed)
# gensim_model = KeyedVectors.load_word2vec_format(args.pretrained_word2vec_file, binary=True, limit=300000)
gensim_model = KeyedVectors.load_word2vec_format(args.pretrained_word2vec_file, binary=True)
print("\nLoaded word2vec from %s\n" % args.pretrained_word2vec_file)
train_dataset = SentencePolarityDatasetV1(x_train, y_train, gensim_model, args.max_seq_len)
test_dataset = SentencePolarityDatasetV1(x_test, y_test, gensim_model, args.max_seq_len)
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
return_list=True,
shuffle=True,
collate_fn=lambda batch: generate_batch(batch),
)
test_loader = DataLoader(
test_dataset,
batch_size=args.batch_size,
return_list=True,
shuffle=False,
collate_fn=lambda batch: generate_batch(batch),
)
model = Word2VecBoWTextClassification(
gensim_model.vector_size, args.sent_embedding_dim, args.dropout, args.num_classes
)
if dist.get_world_size() > 1:
model = paddle.DataParallel(model)
model.train()
adam = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=args.lr, weight_decay=args.weight_decay)
criterion = nn.CrossEntropyLoss()
for epoch in range(args.epochs):
print("Epoch %d/%d" % (epoch + 1, args.epochs))
for step, batch_data in enumerate(train_loader, start=1):
ids, label, seq_lens = batch_data
output = model((ids, seq_lens))
loss = criterion(output, label)
loss.backward()
adam.step()
adam.clear_grad()
if step % args.logging_step == 0:
print("step %d, loss %.4f" % (step, float(loss)))
acc = test(model, test_loader)
print("\ntest acc %.4f\n" % acc)
@paddle.no_grad()
def test(model, test_loader):
correct = num = 0
model.eval()
for batch_data in test_loader:
ids, label, seq_lens = batch_data
# [batch_size, 2]
output = model((ids, seq_lens))
num += label.shape[0]
predict = paddle.argmax(output, axis=1)
label = paddle.cast(label, dtype=predict.dtype)
correct += int(paddle.sum(paddle.cast(predict == label, dtype="int64")))
model.train()
return correct * 1.0 / num
if __name__ == "__main__":
args = parse_args()
train(args)