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(Projected Gradient Descent)

Projected Gradient Descent

Solve Exercises 23, 24 , 26 from the lecture notes.

Computing Fixed Points

Gradient descent turns up in a surprising number of situations which apriori have nothing to do with optimization.
In this exercise we will see how computing the fixed point of functions can be seen as a form of gradient descent.
Suppose that we have a 1-Lipschitz continuous function g : R→ R such that we want to solve for

g(x) = x .

A simple strategy for finding such a fixed point is to run the following algorithm: starting from an arbitary x0,
we iteratively set

xt+1 = g(xt) . (1)

Practical exercise. We will try solve for x starting from x0 = 1 in the following two equations:

x = log(1 + x) , and (2)

x = log(2 + x) . (3)

Follow the Python notebook provided here:

colab.research.google.com/github/epfml/OptML course/blob/master/labs/ex03/template/notebook.ipynb

What difference do you observe in the rate of convergence between the two problems? Let’s understand why this
occurs.

Theoretical questions.

1. We want to re-write the update (1) as a step of gradient descent. To do this, we need to find a function f
such that the gradient descent update is identical to (1):

xt+1 = xt − γf ′(xt) = g(xt) .

Derive such a function f .

2. Give sufficient conditions on g to ensure convergence of procedure (1). What γ would you need to pick?
Hint: We know that gradient descent on f with fixed step-size converges if f is convex and smooth. What
does this mean in terms of g?

3. What condition does g need to satisfy to ensure linear convergence? Are these satisfied for problems (2)
and (3) in the exercise?
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