
Optimization for Machine Learning
CS-439

Lecture 6: Non-convex optimization

Nicolas Flammarion

EPFL – github.com/epfml/OptML_course

April 12, 2024

github.com/epfml/OptML_course

Trajectory Analysis

Even if the “landscape” (graph) of a nonconvex function has local minima, saddle
points, and flat parts, gradient descent may avoid them and still converge to a global
minimum.

For this, one needs a good starting point and some theoretical understanding of what
happens when we start there—this is trajectory analysis.

2018: trajectory analysis for training deep linear linear neural networks, under suitable
conditions [ACGH19].

Here: vastly simplified setting that allows us to show the main ideas (and limitations).

EPFL Optimization for Machine Learning CS-439 2/21

Linear models with several outputs

Recall: Learning linear models

▶ n inputs x1, . . . ,xn, where each input xi ∈ Rd

▶ n outputs y1, . . . , yn ∈ R
▶ Hypothesis (after centering):

yi ≈ w⊤xi,

for a weight vector w = (w1, . . . , wd) ∈ Rd to be learned.

Now more than one output value:

▶ n outputs y1, . . . ,yn, where each output yi ∈ Rm

▶ Hypothesis:
yi ≈ Wxi,

for a weight matrix W ∈ Rm×d to be learned.

EPFL Optimization for Machine Learning CS-439 3/21

Minimizing the least squares error

Compute

W ⋆ = argmin
W∈Rm×d

n∑
i=1

∥Wxi − yi∥2 .

▶ X ∈ Rd×n: matrix whose columns are the xi

▶ Y ∈ Rm×n: matrix whose columns are the yi

Then
W ⋆ = argmin

W∈Rm×d

∥WX − Y ∥2F ,

where ∥A∥F =
√∑

i,j a
2
ij is the Frobenius norm of a matrix A.

Frobenius norm of A = Euclidean norm of vec(A) (“flattening” of A)

EPFL Optimization for Machine Learning CS-439 4/21

Minimizing the least squares error II

W ⋆ = argmin
W∈Rm×d

∥WX − Y ∥2F

is the global minimum of a convex quadratic function f(W).

To find W ⋆, solve ∇f(W) = 0 (system of linear equations).

⇔ training a linear neural network with one layer under least squares error.
x1

x2

x3

x4

x5

y1

y2

W

x 7→ y = Wx

EPFL Optimization for Machine Learning CS-439 5/21

Deep linear neural networks

x1

x2

x3

x4

x5

y1

y2

h11

h12

h13

h14

h21

h22

h23

h24

h25

h26

W1 W2 W3

x 7→ y = W3W2W1x

Not more expressive:

x 7→ y = W3W2W1x ⇔ x 7→ y = Wx, W := W3W2W1.

EPFL Optimization for Machine Learning CS-439 6/21

Training deep linear neural networks
With ℓ layers:

W ⋆ = argmin
W1,W2,...,Wℓ

∥WℓWℓ−1 · · ·W1X − Y ∥2F ,

Nonconvex function for ℓ > 1.

Simple playground in which we can try to understand why training deep neural
networks with gradient descent works.

Here: all matrices are 1× 1, Wi = xi, X = 1, Y = 1, ℓ = d ⇒ f : Rd → R,

f(x) :=
1

2

(
d∏

k=1

xk − 1

)2

.

Toy example in our simple playground.

But analysis of gradient descent on f has similar ingredients as the one on general
deep linear neural networks [ACGH19].

EPFL Optimization for Machine Learning CS-439 7/21

A simple nonconvex function

As d is fixed, abbreviate
∏d

k=1 xk by
∏

k xk: f(x) =
1

2

(∏
k

xk − 1

)2

Level set plotEPFL Optimization for Machine Learning CS-439 8/21

The gradient

∇f(x) =

(∏
k

xk − 1

)∏
k ̸=1

xk, . . . ,
∏
k ̸=d

xk

 .

Critical points (∇f(x) = 0):
▶
∏

k xk = 1 (global
minima)
▶ d = 2: the hyperbola

{(x1, x2) : x1x2 = 1}
▶ at least two of the xk are

zero (saddle points)
▶ d = 2: the origin

(x1, x2) = (0, 0)

EPFL Optimization for Machine Learning CS-439 9/21

Negative gradient directions (followed by gradient descent)

Difficult to avoid convergence to a global minimum, but it is possible (Exercise 42).
EPFL Optimization for Machine Learning CS-439 10/21

Convergence analysis: Overview
Want to show that for any d > 1, and from anywhere in X = {x : x > 0,

∏
k xk ≤ 1},

gradient descent will converge to a global minimum.

f is not smooth over X. We show that f is smooth along the trajectory of gradient
descent for suitable L, so that we get sufficient decrease

f(xt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥2, t ≥ 0.

Then, we cannot converge to a saddle point: all these have (at least two) zero entries
and therefore function value 1/2. But for starting point x0 ∈ X, we have f(x0) < 1/2,
so we can never reach a saddle while decreasing f .

Doesn’t this imply converge to a global mimimum? No!

▶ Sublevel sets are unbounded, so we could in principle run off to infinity.

▶ Other bad things might happen (we haven’t characterized what can go wrong).

EPFL Optimization for Machine Learning CS-439 11/21

Convergence analysis: Overview II

For x > 0,
∏

k xk ≥ 1, we also get convergence (Exercise 41).

⇒ convergence from anywhere in the interior of the positive orthant {x : x > 0}.

But there are also starting points from which gradient descent will not converge to a
global minimum (Exercise 42).

EPFL Optimization for Machine Learning CS-439 12/21

Main tool: Balanced iterates

Definition
Let x > 0 (componentwise), and let c ≥ 1 be a real number. x is called c-balanced if
xi ≤ cxj for all 1 ≤ i, j ≤ d.

Any initial iterate x0 > 0 is c-balanced for some (possibly large) c.

Lemma
Let x > 0 be c-balanced with

∏
k xk ≤ 1. Then for any stepsize γ > 0,

x′ := x− γ∇f(x) satisfies x′ ≥ x (componentwise) and is also c-balanced.

Proof.
∆ := −γ(

∏
k xk − 1)(

∏
k xk) ≥ 0. ∇f(x) = (

∏
k xk − 1)

(∏
k ̸=1 xk, . . . ,

∏
k ̸=d xk

)
.

Gradient descent step:

x′k = xk +
∆

xk
≥ xk, k = 1, . . . , d.

For i, j, we have xi ≤ cxj and xj ≤ cxi
(⇔ 1/xi ≤ c/xj). We therefore get

x′i = xi +
∆

xi
≤ cxj +

∆c

xj
= cx′j .

EPFL Optimization for Machine Learning CS-439 13/21

Bounded Hessians along the trajectory
Compute ∇2f(x):

∇2f(x)ij is the j-th partial derivative of the i-th entry of ∇f(x).

(∇f)i =

(∏
k

xk − 1

)∏
k ̸=i

xk

∇2f(x)ij =

∏
k ̸=i

xk

2

, j = i

2
∏
k ̸=i

xk
∏
k ̸=j

xk −
∏
k ̸=i,j

xk, j ̸= i

Need to bound
∏

k ̸=i xk,
∏

k ̸=j xk,
∏

k ̸=i,j xk!

EPFL Optimization for Machine Learning CS-439 14/21

Bounded Hessians along the trajectory II

Lemma
Suppose that x > 0 is c-balanced. Then for any I ⊆ {1, . . . , d}, we have

(
1

c

)|I|
(∏

k

xk

)1−|I|/d

≤
∏
k/∈I

xk ≤ c|I|

(∏
k

xk

)1−|I|/d

.

Proof.
For any i, we have xdi ≥ (1/c)d

∏
k xk by balancedness, hence xi ≥ (1/c)(

∏
k xk)

1/d.It
follows that

∏
k/∈I

xk =

∏
k xk∏
i∈I xi

≤
∏

k xk

(1/c)|I|(
∏

k xk)
|I|/d = c|I|

(∏
k

xk

)1−|I|/d

.

The lower bound follows in the same way from xdi ≤ cd
∏

k xk.

EPFL Optimization for Machine Learning CS-439 15/21

Bounded Hessians along the trajectory III

Lemma
Let x > 0 be c-balanced with

∏
k xk ≤ 1. Then∥∥∇2f(x)
∥∥ ≤

∥∥∇2f(x)
∥∥
F
≤ 3dc2.

where ∥A∥F is the Frobenius norm and ∥A∥ the spectral norm.

Proof.
∥A∥ ≤ ∥A∥F : Exercise 43. Now use previous lemma and

∏
k xk ≤ 1:∣∣∇2f(x)ii

∣∣ = |(
∏
k ̸=i

xk)
2| ≤ c2

∣∣∇2f(x)ij
∣∣ ≤ |2

∏
k ̸=i

xk
∏
k ̸=j

xk|+ |
∏
k ̸=i,j

xk| ≤ 3c2.

Hence,
∥∥∇2f(x)

∥∥2
F
≤ 9d2c4. Taking square roots, the statement follows.

EPFL Optimization for Machine Learning CS-439 16/21

Smoothness along the trajectory
Lemma
Let x > 0 be c-balanced with

∏
k xk < 1, L = 3dc2. Let γ := 1/L. Then for all

0 ≤ ν ≤ γ,
x′ := x− ν∇f(x) ≥ x

is c-balanced with
∏

k x
′
k ≤ 1, and f is smooth with parameter L over the line

segment connecting x and x− γ∇f(x).

Proof.
▶ x′ ≥ x > 0 is c-balanced by Lemma 6.5.

▶ ∇f(x) ̸= 0 (due to x > 0,
∏

k xk < 1, we can’t be at a critical point).

▶ No overshooting: we can’t reach
∏

k x
′
k = 1 (global minimum) for ν < γ, as f is

smooth with parameter L between x and x′ (using previous bound on Hessians in
Lemma 6.1).

▶ By continutity,
∏

k x
′
k ≤ 1 for all ν ≤ γ.

▶ f is smooth with parameter L between x and x′ for ν = γ.

EPFL Optimization for Machine Learning CS-439 17/21

Convergence

Theorem
Let c ≥ 1 and δ > 0 such that x0 > 0 is c-balanced with δ ≤

∏
k(x0)k < 1. Choosing

stepsize

γ =
1

3dc2
,

gradient descent satisfies

f(xT) ≤
(
1− δ2

3c4

)T

f(x0), T ≥ 0.

▶ Error converges to 0 exponentially fast.

▶ Exercise 44: iterates themselves converge (to an optimal solution).

EPFL Optimization for Machine Learning CS-439 18/21

Convergence: Proof
Proof.
▶ For t ≥ 0, f is smooth between xt and xt+1 with parameter L = 3dc2.

▶ Sufficient decrease:

f(xt+1) ≤ f(xt)−
1

6dc2
∥∇f(xt)∥2 .

For every c-balanced x with δ ≤
∏

k xk ≤ 1, ∥∇f(x)∥2 equals

2f(x)

d∑
i=1

∏
k ̸=i

xk

2

≥ 2f(x)
d

c2

(∏
k

xk

)2−2/d

≥ 2f(x)
d

c2

(∏
k

xk

)2

≥ 2f(x)
d

c2
δ2.

▶ Hence, f(xt+1) ≤ f(xt)−
1

6dc2
2f(xt)

d

c2
δ2 = f(xt)

(
1− δ2

3c4

)
.

EPFL Optimization for Machine Learning CS-439 19/21

Discussion

Fast convergence as for strongly convex functions!

But there is a catch. . .

Consider starting point x0 = (1/2, . . . , 1/2).

δ ≤
∏

k(x0)k = 2−d.

Decrease in function value by a factor of(
1− 1

3 · 4d

)
,

per step.

Need T ≈ 4d to reduce the initial error by a constant factor not depending on d.

Problem: gradients are exponentially small in the beginning, extremely slow progress.

For polynomial runtime, must start at distance O(1/
√
d) from optimality.

EPFL Optimization for Machine Learning CS-439 20/21

Bibliography

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu.
A convergence analysis of gradient descent for deep linear neural networks.
In ICLR - International Conference on Learning Representations, 2019.

EPFL Optimization for Machine Learning CS-439 21/21

